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NANOMECHANICS OF SURFACES AND INTERFACES

An engineering revolution is currently underway in that devices at the nanometer scale are fabricated. Successful
design and development of nanoscale devices and systems will have a significant impact in our lives. The micro-
electronics industry is currently pursuing 0.15-micron process technology and this will be extended to the 100-nm
process technology in the next few years. The information storage industry is investigating control and processing
of nanometer grain magnetic thin films for ultra high-density data storage. Biotechnology of DNA and protein
microarrays involving oligonucleotide molecules attached to glass or plastic substrates promises to monitor the
whole human genome on a single chip so that researchers can have a better picture of the interactions among
thousands of genes simultaneously. We, as students of Mechanics, have an important role to play in these new
developments. This is not unexpected; even Aristotle gave Mechanics a sense of vidatdes: works against
man’s needs, because it always takes its own course. Thus, when it is necessary to do something that goes beyond
Nature, the difficulties can be overcome with the assistance of Engineering. Mechanics is the name of the Engi-
neering discipline that helps us over those difficulties; as the poet Antiphon put it “Engineering brings the victory
that Nature impedes.”

The emerging field of nanomechanics is concerned with extending concepts and methods in traditional mechanics
to describe the mechanical response of nanoscale deeigesthe deformation modes of nanotubé$ nanometer
length scales, conventional computational meth@g., finite element methddor design and analysis are no
longer appropriate. There is a compelling need for novel modeling and simulation techniques suitable for nanoscale
science and engineering as well as innovative experiments to validate these methods.

Modeling and simulation of materials at the nanoscale will require not only atomic and molecular modeling, but
also modeling at both the mesoscopic and continuum scales. This is especially true of mechanical properties that
depend on phenomena at all possible length scales. For example, it is known that atomic and molecular arrange-
ments(and energiesat the cores of dislocations and at the tips of cracks play a dominant role on the mechanical
properties of materials. These effects manifest themselves through the properties and behavior of imperfections and
through the collective behavior of these imperfections at the continuum scale. The grand challenge of nanoscale
modeling and simulation is to develop computational methods capable of spanning different length scales. The
validation of such computational methods will also require comparison with experiments, especially ones that
directly reveal material behavior at multiple length scales. One example is the nanoindentation experiment that,
besides being a widely used experimental method to measure nanoscale material properties, also appears to be ideal
for validating modeling and simulation methods. We need more experimental methods that provide direct informa-
tion about mechanical properties of materials at all length scales of interest, from the atomic and molecular scale,
through the mesoscopic to the continuum scale.

The group of eight papers that follows is intended as a preliminary overview of some of the current topics and
opportunities of interest to the researchers from a traditional mechanics background. The authors have utilized their
varying expertise in applied physics, materials, and mechanics to provide an exciting view in the world of nano-
mechanics. We hope that the readers of the Journal will find this work useful and stimulating.
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== I Behavior on Bilayer Decohesion
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eeiss | of Thin Metal Films From
x wans I Nonmetal Substrates

Alventive, Inc.,
Galeria Parkway, Suite 400,
Atlanta, GA 30339 Nonlinear unloading behavior has been observed in thin metal films on substrates. In the
e-mail: xwang@alventive.com present work, the effects of this nonlinear unloading behavior on the strain energy release
) rate in bilayer decohesion experiments, in which a highly stressed overlayer (“driver”) is
C.-Y. Hui used to decohere a layer (“target”) from a substrate, is modeled. Cases where either the
Department of Theoretical and Applied driver or the target layer are nonlinear are considered. For particular combinations of
Mechanics, stiffnesses and thicknesses, the difference between linear and nonlinear unloading behav-
Cornell University, ior can be quite large (several hundred percent) at experimentally observed stress levels.
Kimball Hall, For practical cases of CR/CU and CU/glass driver/target layer combinations, the maxi-
Ithaca, NY 14853 mum difference is about 25%DOI: 10.1115/1.1468998
e-mail: ch45@cornell.edu
1 Introduction which the yield stress of the film on reverse loading is reduced to

rég point that it becomes negative: i.e., during unloading, the film
gins to yield plastically in compression while the applied

esses are still tensil§s,9]). An example is shown in Fig. 1.

Here, the stress in a im thick Cu film encapsulated by thin

;])v. e?eigrﬁfs]'izgtgga :gl:ne?si]t?umggrgén gngznﬁeﬁﬁgﬁuazgﬁfﬁsm barrier (underlayer and passivatiorfoverlayey films on a
Y P P P Y %icsubstrate is shown as a function of temperature during the

including: the cohesive energy at the interface, elastic, and plas o
properties of the film and substrate, thickness of the film, stre cond thermal cycle between room temperature and 600°C

; ' . 0]). Also shown is the “thermoelastic line” that the stress
level in the film, the geometry of the crack, and environment ” . . .
effects. Furthermore ?WO deC())/hesion modes have been obserx&%‘”d follow if the deformation during heating were purely elas-

The adhesion between thin metal films and nonmetal substr
is a major technological concern and a number of analytical ars1§,
experimental investigations on this topic have been repdfted

Depending on the adhesion between the thin film and the substrei It is evident that the data deviate from the thermoelastic line

e,
o inning at a temperature of about 100°C, where the stress on the
and the stresses, cracks may initiate and propagate along the i M, 9P QMR RIE S A e hove this line-
substrate interfacg5,6]) or start at the interface, extend into thqaxation towards more tensile stressizsmediately after yieldin
substrate and evolve into a trajectory parallel to the interfgice y y 9
3)).

indicates that the plastic strains are compressive.
. . . As in classical descriptions of the Bauschinger effect, this
geﬁgeeg?rggg)%eo: g?s.ufhheCr?er;?ngﬁelzteergatis(:r:sn?é?z;/lll?zﬁigz :Qaeteerri?j‘rfﬁegative yielding” behavior indicates deformation that is driven
microelectronics. Because of its excellent electrical conductivigg energy stored in the film during the previous load{ogoling

- S ; . : le. A mechanism for this type of behavior based on the storage
and resistance to electromigration, Cu is used in a wide array . . ; -
applications including Si-based integrated circuits, flat panel diI - grfraeé:gg/ igxs(geir:]er?g 'cr,'stehdeeﬁgvv%;'ﬁlﬁ (t:ﬁgor:e!;neentle\)/\?c?rtl? !
plays and other large area electronics, multichip modules, CirCl\f\'/{e consider the eﬁegt o?this nonlinear uﬁloadingpbehavior on’ the
boards, and individual high-performance thin film deviceg. - . .9 .

o : : o ' driving force for decohesion crack propagation in two “driver
transistors, resistors, capacitork these applications, Cu layersg, -, = . ) . .
are deposited on, and srt)re i? turn covergz with, other Ia)}/ers f%%fn pllayer decohesm?‘n PrOb,,'e”?S- In one, a h!ghly stressed I|lnear
many different types of material including oxide and nitride bart astic overlayerthe dnv_er ) is US-Ed ton drlve”a de_cohe5|on

rack between an underlying metal filithe “target”) having un-

riers, polymer dielectrics, and metallic seed and adhesion Iayq?s.d. N i

; . . . ing behavior like that shown in Fig. 1 and the substrate. In the
Due to differential thermal expansion between Cu and the typic her g%he metal film is the driver anc? is used to cause an under-
nonmetal substratés.g., Si, glass, polymthat are used in such ing linear elastic layer to decohere from the substrate. In both

\?V?\?élﬁaitéotrll?’n Vrigl Telglgi tsc,)trdeesggse;?srgl/ f:irllj‘ree IR ﬁﬁ%b@?ﬁ"ﬁéﬁte'é%ses, the effect of the nonlinear unloading in the metal film
, ,» may ) own in Fig. 1 on the strain energy release rate during decohe-

studies have focused on adhesion between Cu and various Oti]lgﬁ is considered. General solutions for these bilayer problems

layers([6,7]). . - ; -
):n re([ceng)studies of the thermomechanical behavior of Cu thifl pres_ented, along with predictions for particular cases involv-
films, a very strong Bauschinger-like effect has been observed ity Cu films.

Contributed by the Applied Mechanics Division offf AMERICAN SOCIETY OF 2 BiIayer Modeling

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . . . .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, March The model can be described using the thOUth experiment illus-

, : final revision, December 15, . Associate Editor: D. A. Kouris. Discu in Fig. 2. Fi i i

15, 2001; final revision, D ber 15, 2001. Associate Editor: D. A. Kouris. Discutfated in Fig. 2. Figure @) shows a bilayer film on a substrate
sion %ﬂ thetpapir SPO'\L/Jlld Ee a_ddlressgd éo the Editotr,lPlrEofe_Ssor Robeuft M. M_tCMeWith a decohesion crack running from the right to the left along
ing, Department of Mechanical and Environmental Engineering University : : : ~
California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted uﬂg?f? b|Iayer/substrate interface. Due to internal stresses, the deco
four months after final publication of the paper itself in the ASMBUBNAL OF ered bilayer curls away from the substrate. Our general strategy

APPLIED MECHANICS. will be to compare the strain energy per unit film arda,., , far
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Fig. 1 Thermomechanical behavior of a 1- um thick Cu film
encapsulated between Si 3N, layers on a Si substrate  ([10]). The
solid line indicates the expected thermoelastic behavior of the

film. The data deviate upward from the thermoelastic line be-
ginning at about 150°C during initial heating indicating the on-

set of compressive plastic yielding although the film is still in
tension. This nonlinear unloading behavior is included in the

For a bilayer film, the stress state before decohesion is, in gen-
eral, biaxial in the plane of the film. When the bilayer is released
from the substrate an8 and M are applied, it curves along the
direction perpendicular to the crack front. The stresses are relaxed
in this direction, but parallel to the crack front the decohered
bilayer has no curvature and hence continues to support stresses in
this direction. In other words, the stress state is approximately that
corresponding to plane strain in the plane with normal in the di-
rection parallel to the crack front. However, to make this problem
more tractable, we neglect the stresses parallel to the crack front.
This uniaxial treatment is similar to treating the sample as if it
were a decohering narrow strifb]).

2.1 Model for the Linear Driver Film Experiment. In the
driver film experiment, a highly stressed “driver” fillayer 1 in
Fig. 2) is deposited onto a “target” film of interegtayer 2 in
order to measure the adhesion between the target film and the
substrate((11]). In general, the driver film is selected such that
7> 09 so that the bilayer curls up when it decoheres from the
substrate. A typical driver film is a refractory meta.g., Cj

subsequent decohesion modeling. evaporated at low temperature so as to support very high stresses
after deposition. Such a film does not show the nonlinear unload-
ing behavior shown in Fig. {{11]). Thus, we model the driver as

) . . linear elastic and compare the cases where the target film exhibits
ahead of the decohesion crathaded area on the left in Fig.|inear and nonlinear unloading behavior.

2(a)) with the strain energy per unit area far behind the decohe-

sion crackU _,. (shaded area on the right in Figa®). The strain ~ 2.1.1 Linear Unloading in Target Film. We begin with the
energy per unit area available to drive the crack is then Gust case where layers 1 and 2 are both linear elastic and have uniform
=U,;.—U_.. initial stressesr] ando3, Young’s moduliE, andE,, and thick-

To find U, andU_.., we need to know the stresses in thenesse$, andh,, respectively. The strain energy per unit area far
layers. We assume that, before decohesion, layers 1 and 2 supph#ad of the cracikthe shaded area on the left side of Fi¢p)2is
uniform stresses; and o5 due to the constraint imposed by the
substratgFig. 2(b)). To find the stresses in the decohered bilayer,
we imagine releasing both layers from the substrate as shown in
Fig. 2(c). We then apply equal and opposite momens, and +oo
uniaxial forces,S per unit width to the two layers as shown in
Fig. 2(d) in order to match their lengths and curvatures along the
layer 1/layer 2 interface. When these conditions are met, tfide stresses in the two layers after the layers have been released
stresses in the layers are the same as those in the decoheredrdnn the substratéFig. 2(c)) andSandM are appliedFig. 2(d))
layer. can be written as

_(‘Tcl))zhl

(Ug)zhz
2E, '

2E, @

layer 1
/ — \
5 substrate
<0O>o0; M
<> o] g ).

==

substrate

)\

0,=0

substrate

c)

Fig. 2 Schematic of the bilayer adhesion problem. (a) The strain energy release rate
can be obtained by comparing the strain energy in the film far ahead of and far behind

the decohesion crack front.  (b) Far ahead of the crack, the strain energy is just that
arising from the initial stresses in the two layers. We then imagine (c) releasing the
films from the substrate and  (d) applying edge forces S and moments M to ensure
that the two layers have the same length and curvature along the interface. When
these two conditions are met, the layers can be joined, and have the configuration of

the bilayer behind the crack. The strain energy can be calculated from Sand M and
the properties of the layers.
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S Shl Y1 600 T T T AR
1= + - M T (2a) soof 1 um Cu film on Si with Si3Ny ]
1 1 400k Z%o o barrier and passivation
S [Sh Y2 £ 300% %0 ]
——+|=+M|=, 2 0000,
72 h, 2 Iy (20) ?m/ 200F ° %000, E
where|;=h%/12 andl,=h3/12 are the moments of inertia per £ 10F c o,
unit width, andy,; andy, are coordinates normal to the plane of 0 5
each layer(measured down from the center of each layer as -100F D °%65555 5555500
shown in Fig. 2d)), for layer 1 and layer 2, respectively. The 200k . . . ‘ . E
requirement that the change in strain along the interface plane be 0 100 200 300 400 500 600
the same in both layef$hat is, ath; =y,/2 andh,= —y,/2) when Temperature (°C)
the layers are removed from the substrate and rejoined as shown
in Fig's 2(b)—2(d) can be expressed as Fig. 3 The linearization of the Cu film unloading problem is
17s S h accomplished by approximating substrate curvature o—T data
— =+ _hl_ M _1 —eT with straight lines during heating
Eilhy | 2 21, 7t
1 S [Sh h, T
EM‘(TM)W ®) M
where " ERALT ()
T o) then by combining Eq94) and(6) and using the substitutions in
g1 ES (4a)  Egs.(7) and(8), after substantial manipulation we find solutions
1 for the stresses in the layers after decohesifs. (2a) and (2b))
and which can be written as
(0] (o] (o]
T_92 017 W03 Y1
=_2 4b = - - —=
°27E, (40) =TT o)1t xy) | ST 270, (%)
The requirement that the curvatures be the same along the layatl
1/layer 2 interface in Fig. (@) can be written as o o
1 (s 1 (s e ( 2y yz) ()
Oo="—a .+ . | — = |-
E(%—M):ﬁ(%‘i‘l\ﬂ . (5) z (l+w5)(l+X7) 2y h2
i ' 22 The solution to Eq(6) is then
To findU _.,, we must solve Eq's.3) and(5) for SandM, and
use these values in the expressions for the stresses in the layers in 14 wst12v2 1+ 1
Eq. (2). The strain energy per unit width far behind the créttie h, o~ wo 2 @ Y wd°
shaded area on the right side of Figa@ can then be found from U‘°°_2_El (1t @d)(1+xy) (1t wy)?
1 (M2 o2 1 (h2 o3 (10)
U_.=5 7hl/2E—1dy1+ 2] 0 nEs dy,. ®)  Finally, using Eqs(1), (7a), (7b), and (10) we find the strain

energy release rat§=U ... —U_.,, for the linear elastic case to
The solution can be put into a considerably more useful forge

by making the following substitutions:

(o] (o] 2
8=—, (7a) _ Ml 02, @ 0 | T1m®02
h, G=2g, | TVt 5OV A w1ty
El 1 \
w=—=, 7b 2 o
E, (70) 1+ws+12y2 1+ Mg)
1 1 5 1 x (1t wy)? (11)
E:E_+E_:E_(1+6w), (7C)
1 2 1 2.1.2 Nonlinear Unloading Behavior in Target FilmWe as-
6(1+ o) sume that a film undergoing isothermal unloadiag during de-
X= 1t wd)’ (7d)  cohesion would follow the behavior shown in Fig. 1, at least at

strains corresponding to low temperatures. We approximate this
w&(1+0) behavior by a series of straight lines as shown in Fig. 3. Using the
Y= 5T ) (7e)  known thermal expansion coefficients of the Cu film and the Si
(1+wd’) substrate, we can convert the stress-temperature behavior along
and the path ABCDE, into stress-strain behavior with the zero elastic
strain axis at point C, as shown in Fig.(41]). Since the deco-
hered film will never be reloaded, we can treat the nonlinear un-
loading behavior shown in Fig. 1 as if it were elastic. That is,
although the nonlinear behavior may arise from dislocation mo-
tion during unloading([8,10]), the stresses will decrease along a
S path similar to that shown in Fig. 4 and this may be treated as a
s= EhAsT (8a) nonlinear elastic unloading process.
1 The initial slope in Fig. 1(segment AB in Fig #is seen to
and correspond to that which would be predicted from the well-known

of o 1

E, E; E

T_ T T

Ae'=g;—g,= (05— wa$). (1)

If we then let

Journal of Applied Mechanics JULY 2002, Vol. 69 / 409



A 0 (compare with Eq. é)). Otherwise, Eqs(2)—(6) remain the
o A same. The substitutions given by E¢8) now become
Oy [m e ‘
| h
| o= h—l (unchanged from(7a)) (14a)
.‘ 2
* ' w* = E (14b)
2 B | S
c . 2o 2 i, (140)
G £ £ E* E; E} E;
E P ’
6(1+6)
NE JE o T
H 2 E 2 X 5(1_,'_(0* 5) ) (l4d)
2
Fig. 4 The o—¢& behavior corresponding to the approximation *_ w* 6%(1+6) (14e)
of the o— T data in Fig. 3 along the path ABCDE obtained using Y 2(1+ o* ?) ’
the temperature-dependent thermal expansion coefficients of
Cu and Si [11] and
(o] (o]
o, 0y 1 1
(AeT)*=el~(e2)" = ~ E—2+05(E—2— 5)
elastic constants and thermal expansion coefficients of Cu and Si. 1
Thus, the effect of the nonlinear unloading on the strain energy _ T 0 0_ _k( k_ 14f
release rate can be visualized by comparing the case of linear El(gl woy= oz (@7~ @), (247)
unloading(along line AP with that of nonlinear unloading which
initially follows the line AB, but then deviates to a second brancHf @ before we now let
BD, and then to the third branch, DE. Sine&> 3, the stresses S*
in layer 2 after decohesion will be more compressive than those in s*= EhAsT* (15a)
layer 1. Thus, compared with the linear case, an element in the 1(Ae’)
nonlinear layer provides additional strain eneftfye area in the zpg
triangle BCQ as it is unloaded to zero stress, and costs signifi-
cantly less strain energy as the stress becomes compressive due to N M*
the higher compliance of the second and third branches. m” = E*hZ(As)* h2(AeT)*’ (1%0)

In the present model, we consider only the first and second
branch, allowing the stress to continue along the second branchaasl follow a similar procedure to that described above, we find
far as necessargin the direction BDH. The stresses in layer 2 solutions for the stresses in the layers after decohegsiompare
will then, in general, lie along the path ABH after unloadingwith Egs.(9a) and(9b)) which can be written as
However, the difference between the linear and non linear cases

will be largest if all of the stresses in this layer lie along the 702_0’03—05(0)*—&)) 1412 WY1 16
second branch. Thus, we only consider solutions whef& 91= (1= S6w™)(1+x*¥*) Tley hy (162)
<o5 , whereoy™ is the (algebrai¢ maximum stress and3 the
stress at the top of the second brarfphbint B in Fig. 4. and
The strain energy per unit area far ahead of the crack front for 09— wod— 0} (0* — ) 129* v,
the bilayer now becomes o= = — (— +—= —). (160)
(1= S8w*)(1+ x* v*) ®* 8 h,

_(o‘{)zhl h, The strain energy per unit area in the decohered bilayer then be-

(03)? 1
A o= = +(0oD? =—=||, @2
2B 2| B Z\E} E (12) * comes
where E} is the compliance of layer 2 on the second branch. U* _h 08— 0o~ 03 (0* —)]?
Since we limit solutions to cases whesg' <o , Egs. (2)—(6) ® 2E;| (1-8w*)(1+x*y*)

above can be modified for the nonlinear unloading case simply by
substitutinge} for E,, S* for S andM* for M. The change in 1+ w* 5+ 12
strain along the interface in layer 2 during the unloading part of

1) *\2
1+W(7)

the thought experimer(Eig. 2b—c) becomes X (10" 7°)2 17)
of g% ot Finally, using Egs.(12), (14a), (14b), and (17), we find the
(eD)*= _i+ 2 72 (13) strain energy release ra@* =U%.—UZ, for the case where
E> = layer 2 exhibits nonlinear unloading as shown in Fig. 4 to be
|

) (0* — )

(097 + 5 (09 (03)P—5—

- 2E * *\2

[0 w0% o (0 — )| 1T IHIAY) 1+—w*53)

(1= 60%) (14 x*¥Y) (1+w* y*)?
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substrate

Fig. 5 Schematic of the bilayer decohesion problem when
layer 2 is the driver and layer 1 is the target. For this configu-
ration, Egs. (1)—(18) still hold and the solution can still be used.
Only the range of validity of the solutions (Sections 2.1.3 and
2.2) changes.

2.1.3 Limits on Solutions.We implement the requirement ig. 6 Normalized strain energy release rates G (lower sur
that oJ®<c% by observing that the maximum stress in layer fg. 9y

- ace) and G* (upper surface ) as defined in Eq. (21) for linear
qccurfs alyZI: ?]2/2' Thus, from Eq(160), we only consider solu- and nonlinear bilayers, respectively, with  ¢9=1280, o5=400
tions for whic! ' ' ' y

and o3 =150 as a function of the stiffness ratios o (Eq. 7(b))

i ggf wggfgg(w* - w) 6y* . and w* (Eq. 14(b)) at a thickness ratio of é=1 (Eq 7(a)). The

oy = — s (— ——=/<o3 (19) bilayer curves up as shown in Fig. 2. As w—0, G—0 and G*
(1=00™)(+x*7v*) w*d —constant. G* increases with increasing w*.

Note that, since we are only considering films that curl up, we also

limit our solutions to cases whetes T (Eq.(7f)) and AeT)* (Eq.

(14f)) are both positive. We also limit solutions to cases where, .
* N of reference, we use values from experimental measurements that
E> <E, so thatow* = w.

are reported elsewherg¢l1l]). In these experiments, Cr driver

2.2 Model for a Nonlinear Driver Film. We now consider films were used to cause Cu films to decohere from glass sub-
the case where the driver film is nonlinear and the target layersgates. The Cr films were found to have a stress as-deposited of
linear. This would be the case where a metal film with behavid280 GPa, independent of thickness. For Cu we use the values
like that shown in Fig. 1 is used as a driver to cause a linear targtained from Fig. 4. The normalized strain energy release rates,
layer to decohere. The lower layer may be distinct, but it could 2F
also be part of the substratieg., decohesion occurs by extension G=—G and g*= —lG*, (21)
of a crack along a plane parallel to the film/substrate interface but hy hy

located a distance below it in 'ghe substrat.e. This mechanism B8 the case of a bilayer curling up with¢= 1280, 3= 400, and
R(e)ﬁ? S(ﬁit::i(revglcgsgorsuebxsettggé&_|2])<.jecohe3|on of thin metal f'ln?rs‘z* =159(Fig. 4) are plotted in Fig. 6 as a function .af and o*
We could derive new solutions for this problem by using thfor a thickness iatlo ob=1. It is evident tha, Wh.'ch has no
thought experiment of Fig. 2 and assuming that layer 1 is nonli ependence on™, goes to zero as dec_rer_a\s_es. This IS because
ear and layer 2 is linear. However, we can use the derivatio Saconstant ag,—0 (layer 1 becor_ne_s_lnflmtely compliarind
above to describe this problem if we simply invert the geomety 9 615[52—"“’ (layer 2 Eecomes infinitely stiff On the other
of the sample as shown in Fig. 5. Layer 1(ssill) linear, and we and,G* increases withw* at all @ vglues and decreases to a
consider the cases where layer 2(3sill) linear or nonlinear as constant as» decreases. The latter arises becatemust scale
before(paths AF and ABH, respectively, in Fig).4The solutions with E; in order for w to decrease at constaat*. Thus, G*
to this problem are the same as those shown in Section 2.1 andthee as E;—0 (such that the product is constaréand G*
solutions for the strain energy release ra@snd G* given in  —constant ag&,— . The region in which the solution is valid is
Egs.(11) and(18), respectively, still apply. However, the range ofimited at lower values ofw and w* by the requirement that
variables over which the solution is valid changes. The required®<g% , at higher values of» and lower values ot»* by the
ment that the bilayer curvesownupon decohesion from the sub-requirement thaib* = w, and at higher values @ andw* by the
strate means thats " (Eq. (7f) and (Ae")* (Eq. (14f)) must both requirement thane™ and (Ae")* both be positive.
be negative. The maximuitalgebraig stress in layer 2 occurs at |t is evident that the difference between the linear and non-
the interface ¥,= —h,/2), so the requirement that;“<o% be- linear cases increases asdecreases an@* increases. Figure 7

2E,

comes shows the fractional difference in the strain energy release rate,
* Ty * given by
gﬁax:El_:A—f)*( —-6— GTYS) <o3. (20) G*
X7 @ F=5-L (22)
As before, we require thab* = .
over a narrower range ab and o* for the same stresses and
3 Results thickness ratio as in Fig. 6. As expectef 0 whenw = »*, and

. . o . . increases a® decreases and* increases. For the Cr/Cu system,
We wish to determine the conditions under which the difference haveE, = 248 GPa,E,= 230 GPa,E% = 106 GPa, so logf)

between the linear and nonlinear solutions becomes significant."_Y% 018 and loab*)=0.369. The diff . .
our derivation, the stresses;, o5, ando’ are explicit, so we = *: and log¢”)=0.369. The difference in strain energy re-

specify these stresses and calculate strain energy release rate%ifﬁi rg(’f/e S gs:vlezpetmhg mteha;;njlgro;rhlniagfaie i?]zsth(;isﬁse):stem IS
various values of, w, and w*. 0. Yy gero”,

ence rises quickly.

3.1 Linear Driver Film. We begin by considering the nor- Figure 8 showsj and G* as a function ofé and w* for w
malized values of the strain energy release rates obtained by malt. These values both increased&s 0, and decrease @& as
tiplying both sides of Eqs(11) and(18) by 2E,/h;. As a frame a result of the normalization by i{. In Fig. 9, F is shown as a
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Fig. 7 Fractional difference in strain energy release rate, F

(Eq. (22)), as a function of the elastic stiffness ratios ~ wand w*  Fig. 9 Fractional difference in strain energy release rate, F
corresponding to the data shown in Fig. 6 (6=1). The differ-  (EQ. (22)), as a function of the elastic stiffness ratio w* and the
ence is zero along the line w=w* and increases rapidly as ¢« thickness ratio & corresponding to the data shown in Fig. 8

decreases and * increases. The point marked with a cross (w=1). The difference is zero along the line log (»*)=0 and
indicates the stiffness ratios for the case of aCr  /Cu bilayer. The  increases as e* increases. F increases as éincreases and the
strain energy release rate is about 5% higher for nonlinear than upper linear layer dominates. As & decreases, F approaches a
for linear unloading (branches BH and BF, respectively, in Fig constant that depends on  @*. The dark line indicates the stiff-
4) at this point. Note that the scale and perspective are different ness ratios for the case of a Cr /Cu bilayer. The difference in
from Fig. 6. strain energy release rate reaches a maximum of about 24% at

about log (8)=—1.2. Note that the scale and perspective are dif-
ferent from Fig. 8.
function of § and w* for w=1. As expected, along the line
=w*=1, F=0. A small maximum occurs at all values af*
reater than O at about | —1.2. The heavy line at lo . N N
9 0 y o) )* asw* increases. As can be seen in Fig.(@mpare with Fig.

=0.369 indicates the behavior of the Cr/Cu system. The maxf A " _ _ A
mum along this lingat log(®)~—1.2) is about 24%. The gap in /). the fractional difference” is a smooth function that is zero for

the solution arises from the requirement thgf*<o? . w=w*, and goes to infinity a® decreases and* increases. For
the case of a nonlinear Cu driver film decohering a glass target
3.2 Nonlinear Driver Film. We now consider the case|ayer (E,=70 GPa,E,=230 GPa,E} =106 GPa the strain en-

shown in Fig. 5 where the target filkmow layer 1 is linear and ergy release rate is about 15% higher than if the Cu layer were to
the driver film (now layer 3 is either linear or nonlinear. Theseynload linearly.

solutions are similar in form to those described in Section 3.1.|n Figs. 12 and 13compare with Fig's 8 and)9the same
Figure 10(compare with Fig. pshowsG and G* (Eq. (21)) as calculations ofg andG*, andF, respectively, are shown as func-
functions ofw andw* for §=1, 07=0, 03=400, ands; =150. tions of Sandw* for w=0.3 (~E,/E,=70/230). In Fig. 13, the
These stresses correspond to a nonlinear metal film _Iike thtavy line indicatingw* =0.66 (~E,/E,=70/106) represents
shown in Fig 1 decohering an unstressed layer. The solutiofi foithe Cu/glass bilayer system. Along this lifjncreases rapidly as

does not depend oa* and goes to zero as decreases, and that 5 decreases fo5> 1, exceeding 15% at log(~—0.2, decreases
for G* becomes constant with asw decreases and constant with

£y

G G* (x 10%)
w

G. G (x105)
[ 5]

Fig. 8 Normalized strain energy release rates G (lower sur-  Fig. 10 Normalized strain energy release rates G (lower sur-
face) and G* (upper surface ) as defined in Eq. (21) for linear ~ face) and G* (upper surface ) as defined in Eq. (21) for linear
and nonlinear bilayers, respectively, with o{=1280, o5=400, and nonlinear bilayers, respectively, with o)=0, 03=400, and
and o} =150 as a function of the stiffness ratioc  w* (Eq. (14b)) o3 =150 as a function of the stiffness ratios ~ w (Eq. (7b)) and w*
and the thickness ratio & (Eq. (7a)) for @w=1 (Eq. (7b)). The (EQ. (14b)) at a thickness ratio of 6=1 (Eq. (7a)). The bilayer
bilayer curves up as shown in Fig. 2. Both G and G* goto zero  curves down as shown in Fig. 5. As —0, G—0 and G*
as o goes to zero and increase as & increases. —constant. G* increases with increasing w*.
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Fig. 11 Fractional difference in strain energy release rate, ~ # Fig. 13 Fractional difference in strain energy release rate, ~ F
(Eq. (22)), as a function of the elastic stiffness ratios ~ w and w*  (EQ. (22)), as a function of the elastic stiffness ratio ~ «* and the
corresponding to the data shown in Fig. 10 (8=1). The differ- thickness ratio  é corresponding to the data shown in Fig. 12

ence increases rapidly as  w decreases and w* increases. The  (@=0.3). The difference is zero along the line log  (w*)=0 and

point marked with a cross indicates the stiffness ratios for the increases as w* increases. Fincreases as dincreases and the

case of a Cu/glass bilayer. The strain energy release rate is upper linear layer dominates. As & decreases, F approaches a

about 15% higher for nonlinear than for linear unloading constant that depends on  ®*. The dark line indicates the stiff-

(branches BH and BF, respectively, in Fig 4 ) at this point. Note ness ratios for the case of a Cu /glass bilayer. The difference in

that the scale and perspective are different from Fig. 10. strain energy release rate reaches a maximum of about 17% as
6—0. Note that the scale and perspective are different from Fig.
12.

slightly and then increases again slightly, becoming constant at

about 17%(the difference between linear and nonlinear Cu layers ) )
alone as 5—0. well as the range of parameters where the solutions are valid

change. Thus, the solutions shown are representative of the behav-
ior that might be expected for bilayers containing films with un-
loading behavior like that shown in Fig. 1.

The calculations above show that non-linear unloading asinterpretation of the effect of the thickness rafimn the frac-
shown in Figs. 1, 3, and 4 can have a significant effect on thienal difference in the energy release rafieFigs. 9 and 1Bis
strain energy release rate of a bilayer depending on the stress@ightforward. As the lower metal layer becomes thicker relative
elastic constants and thicknesses of the Iayers_. _ to the upper layer §—0), the solutions folG and G* approach
regardless of whether it is the driver or the target film which i§ constant lows, the difference between the linear and nonlinear
non-linear(compare Figs. 6—9 with Figs. 10J13'his is to be goytions, and thusF, increases a®* increases. As increases,
expected since the same solutions are used; only the stressesigadsirain energy becomes concentrated in the upper linear layer
the range of parameters where the solutions are valid differ. Legsq the behavior of a nonlinear lower layer becomes irrelevant.
obviously, the general shapes of the solutions shown in Figs. 684 strain energy difference becomes small atllas the con-
do not change significantly over a wide range of reasonable tensjl ion of the lower layer becomes small. The location of the
stress values, although, again, the magnitude of, and¥, as  maximum in F depends on whether the nonlinear layer is the
driver or the target. If the nonlinear layer is the tar(fég. 2), the
maximum occurs at an intermediate value ®fFig. 9). This is
due to the upper layer compressing the lower layer after unload-
ing, driving it further along the line BH in Fig. 4, thereby increas-
ing the strain energy difference in comparison to the linear film,
which unloads along BF. If the nonlinear layer is the driig.

5), the maximum difference between the linear and nonlinear
caseqFig. 13 occurs as5—0 since the stress is more tensile in
layer 2 and reducing the influence of layer 1 allows the strain
energy in layer 2 to be further reduced.

For the specific cases of Cr/Cu and Cu/glass driver/target com-
binations, this model predicts that the nonlinear unloading in Fig.
1 increases the strain energy release rate by 15-25% compared
with linear unloading at particular values 8{Figs. 9 and 18 Of
course, the total strain energy release rate available depends on the
total thicknesses of the layers, so for a given target layer thick-

15755 0 1og® ness, effects of this magnitude will only be seen in experiments
when the fracture toughness of the interface lies in an appropriate
F|g 12 Normalized strain energy release rates [¢] (|ower sur- range. Since low thickness ratios are needed to maximize the dif-
face) and G* (upper surface ) as defined in Eq. (21) for linear ~ ferences and the stresses in the Cu layers are relatively modest,
and nonlinear bilayers, respectively, with ~ ¢9=0, ¢9=400, and the effects of nonlinear behavior will be most evident for systems

o3 =150 as a function of the stiffness ratio ~ w* (Eq. (14b)) and with low fracture toughness.

4 Discussion

the thickness ratio 6 (Eq. (7a)) for @=0.3 (Eq. (7b)). The bilayer Larger effects than those shown for the Cr/Cu and Cu/glass
curves down as shown in Fig. 5. Both G and G* gotozeroas & bilayers are, in principle, possible. In general, the solutions reveal
goes to zero and increase as & increases. that the differences between the linear and nonlinear unloading
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cases increase as* becomes high at constamt or v becomes  Despite these limitations, the comparisaf#gs. 7, 9, 11, 1B
low at constanw*, in the range of valid solutions. When* is are expected to quantify the relative differences between the non-
high, the difference between the slopes of the fitgf) and sec- linear and linear cases quite well. To the extent that nonlinear
ond (BH) unloading branches in Fig. 4, and thus the difference fehavior such as that shown in Fig. 1 occurs in bilayer decohesion
the overall elastic behavior, is maximized. Whenis low, the ~€experiments, the present model should provide a good estimate of
always-linear upper laydtayer 1) is very compliant compared to the difference relative to a simple linear analysis.
the linear or nonlinear lower metal layéayer 2. If the metal
film is the target, a compliant driver pushes the metal film farther .
into compression, thus maximizing the difference between the liR- Conclusions
ear and nonlinear unloading cases. If the non-linear metal film isA model that can be used to determine the strain energy release
the driver, a compliant target allows the metal to unload fartheste for elastic decohesion of a bilayer in which one of the layers
towards the compressive regime with the same outcome. may show nonlinear elastic unloading has been presented. The
In practice, larger values of may be difficult to achieve. One model is based on the nonlinear unloading behavior observed dur-
can reduce» by decreasing, . However, ifE, is reduced, botlv  ing thermomechanical testing of Cu thin films. In this model, the
and w* are reduced. Interestingly, this does not change the valnenlinear behavior is treated as two different linear branches. For
of F significantly. Calculations wittE, =10 and 1 GPa, and layer a Cr overlayer driving decohesion of a nonlinear Cu film, the
2 values for Cu as abow&,= 230 GPa,E} =106 GPa both re- model predicts that the strain energy release rate could be in-
turn values ofF~25% andF~17% for cases where the metalcreased by about 25% relative to a linear Cu film. For a Cu film
film is the target or the driver, respectively. For the case of thi#iving decohesion of a glass layer, the difference between linear
metal target, the solutions were only valid when the stress in thad nonlinear Cu is about 15%. For bilayers having a nonlinear
driver layer (%) was reduced to about 50 and 25 Mpa fo;y layer with more pronounced nonlinearity the strain energy release
=10 and 1 GPa, respectively. rate can be several times that which would be predicted assuming
One could imagine increasing*, by decreasing% . How- both layers to be linear. For a given nonlinearity, the solution is

ever, this would require changing the material behavior and mgﬁt very sensitive to the compliance of the linear layer. Nonlinear

be difficult to do(although maybe not impossible if it is a micro- |Oading as observed in thin metal films may have a Signiﬁcant

structural effect[8,9]). But we note that our crude approximationeﬁeCt on strain energy release rate in bilayer decohesion experi-

includes only the second brandine BH) in Fig. 4). If the com- MenNts.
pliance of the third branch were uséihe DE in Fig. 4 ((11]),
the difference between the linear and nonlinear cases would RSknowledgmentS

larger.
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Introduction both phases along the interface equally; this type of interface

The mechanics of thin film epitaxy has been an area of expeata_ress can affect the intrinsic stress state of nonepitaxial films

mental and theoretical interest for many years. One of the cent n this paper, the mechanics of thin film epitaxy is developed

3,13])-)
issues involves determining the equilibrium coherency stress an P . .
strain states of the film ag a funqction of the film th>i/ckness. aSIing a formal equilibrium thermodynamics approach incorporat-

standard approach to analyzing this problem has been to milhg linear elasticity. The problem is formulated in a general way,
mize, with respect to the coherency strain, the sum of the volurﬁnd then the constraints and approximations needed to reduce un-

strain energy of the film and the energy of the film-substrate irqgcessary complexity while retaining the essential physics are

. ' . . identified. By carefully considering each of the deformations
terface for a given film thicknes§1]). However, it has been : . . ; . ) . .
pointed out that this approach ignores the strain energy associz{‘trg ded to introduce an elastic strain state in a film while keeping

: ! : P in-plane area fixed, all of the important volume and surface
i onan 4o P ", hermacyamic prameters are obtaned n a natral way. T
 SIg ) . q Y nalysis extends and generalizes previous discussions of the prob-
tem, especially at small film thicknesses.

Recently, it has been shown that the thermodynamics of t?lf?}m3§;lat treated the special case of an elastically isotropic system

film epitaxy ([2,3]), as well as the kinetics of coherency strai
relaxation([3]), can be conveniently analyzed using the concepts

of surface free energy and surface stréss-12)). The surface Coherency Stress and Strain States
free energy is a scalar property defined to be the reversible work . . . . .
per unit area to create new surface. For a solid-fluid interface, theconsider @ Cartesian coordinate system with the 1-axis and
surface free energy is the surface work performed during pr6:2XiS in the plane of the film and the 3-axis perpendicular to the
cesses such as cleavage and creep. The surface stress is a t@ll%%‘? of the plane of the film. Suppose an epitaxial film is par-
that is associated with the reversible work to introduce an in-plafigly Of completely lattice matched to the substrate, resulting in
elastic strain at the surface. Physically, for the solid-fluid intefniform coherency stress and strain states in the film. Let the
face, the surface stress is related to the work to change the surfa@@Ponents of the coherency stress and strain tensors be denoted
atom density while the surface free energy can be taken as fe?ij @ndsi; . respectively. The degree of lattice matching at the
work to change the number of atoms at the surface. Although therface will determine the values of the in-plane strain compo-
surface free energy for a solid-fluid interface must be positif&ENtSE11, €12, ande,,. Since lattice matching results in a state
(otherwise the solid would spontaneously cléatiee components ©f Plane stress, the components, o755, andoss will all be zero.

of the surface stress tensor can be positive or negative. The remaining strain componentss, €53, andeg; and the re-

In a manner analogous to that used for a solid-fluid surface, itf&iNINg Stress componenis;, a5, ando, can be determined
possible to define a surface free energy and surface stresses fBY a50!Ving the simultaneous set of equations obtained from
solid-solid interface. Since there are two solid phases that can BEOKE'S law(for plane stress
independently strained, there are in general two distinct surface 3 2
stresses for the solid-solid interfa®,3,6,9). The type of inter- oij= E Ciew; &ij= E Siki ol ; 1)
face stress of interest for the epitaxy problem can be associated kI=1 kl=1

with the reversible surface work when one of the phases ereC;j, andS;, are the components of the elastic stiffnesses
syretched along the |_nterface keeping the othe_r phase fixed. compliances tensors, respectively, for the film. Although it is
simple model for this interface stress has been given based on n convenient to use a Lagrangian measure of strain in surface
reversible work associated with changing the density of interfaci ermodynamics problems involving solid§8,9]), a Eulerian
misfit dislocations as a film is strained parallel to the interfacv]ar,|easure will used here since the surface are,as’in the problem to
keeping the substrate fixed3]). (The other type of interface p . traated will then be invariant

stress can be associated with the reversible surface work to strel%cﬁor most cases of interest. it Will be energetically favorable for

Comributed by the Abpiied Mechanics Division ofiE A . an epitaxial film with a small film thickness to be completely
ontripute: Yy the Applie echanics Division O MERICAN CIETY OF H _ : H iafi .
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- lattice mat.Ched with the SUb:Strate if the misfit be.tween film and
CHANICS. Manuscript received by the ASME Applied Mechanics Division, M.slrchs_UbStr_ate Is not too Igrge. Since the_ VOlUm_e strain energy of the
15, 2001; final revision, December 10, 2001. Associate Editor: D. A. Kouris. Discufilm will scale with thickness, there is a critical thickness above
sion %n thetpapif SPO'\L/J"d Ee a_ddlfessgdéo the Editotfvlpg)fe_ssm Robeuft M. M_tCMGWhich it is energetically favorable to reduce the degree of lattice
Ing, epartment o echanical an nvironmental ngineering niversity H H H efi H H . _
California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted ﬁilff‘t‘:h'”g by Intrc.)dl.'lcmg misfit dlslocatlo_ns at the .fllm. substrate
four months after final publication of the paper itself in the ASMBUBNAL OF interface([1]). This is because the resulting reduction in volume

APPLIED MECHANICS. strain energy of a film will more than compensate the increase in
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Thermodynamic Formalism

An important principle of thermodynamics is that for a system
that is isolated from its surroundings and is constrained to have a
film A 11 &, B, fixed total entropy, the equilibrium state is the one for which the
L internal energy is a minimum. From this principle, it is possible to
A7 &' By obtain the conditions for thermodynamic equilibrium by using the
virtual variation method developed by GibkiA—17. The physi-
cal interpretation of a virtual variation has been discussed in detail
by Reiss[16]. Mathematically, it involves setting an infinitesimal
variation in the internal energy of a system composed of n
(a) (b) © components equal to zero, holding the entr&yolumeV, and
number of moles of the components, N,, ...N, constant:

substrate

Fig. 1 (a) Thermodynamic system for thin film epitaxy, (b) ap- SU -0 5
plication of in-plane elastic strains to the film and surfaces, (c) SV.Np N, .. Ny ®)

application of i_n-plane creep strains to the film and surfgc_e_s In addition to the keeping V, Ny, N N fixed. it is also
that return the in-plane film area and surface areas to their ini- . Ly PR20 s TN g .
tial values. necessary to include the effects of all other special constraints
imposed on the system during the variation.
The internal energy of a thermodynamic system is a function of

. . e . _the extensive variable§15,17). For the system of Fig. 1, these
the energy resulting from the creation of the misfit d'smcat'on%ariables ars Vv, N ?\(Ii ﬂ)A A andA)’l’ Since the(:;areas are
However, it is also important to recognize that there will be f P 2 e TR ,

contribution to the change in the energy of the system resulti %nctions of the strains;;, &j;, eij, Bij, Bjj, Bjj, the internal
from the concomitant elastic deformation at the free surface of tRB€r9Y can be expressed as
film that can be positive or negative, and thus is an effect that can U=uU(S,V,N;,N,, ... N, A 11,A0€12,A0€ 22, A0B11

either impede or promote lattice matching.
’ ’ ! ! ’ ! ! ’ ! ’
AoB12:A0B22:A0e11, A€ 12, A08 22:A0B11, Aoz
AoB22 Age 11 Age 12, Age 22, AcB11 AcB12, AcBs2) . (6)
It has been noted previously that lattice matching between the
plane area that is bounded by two parallel, planar surfaces. OrfdM @nd substrate results in an in-plane coherency stress, so that
surface of ared\’ is the boundary between the film and a vapol '€ film is in a nonhydrostatic stress state. As a result, the condi-
y PO%ions for thermodynamic equilibrium are more complex than those

phase(henceforth referred to as the free surface of the)fimd btained for th f lid that is hvd icall 4
the other surface of aré¥’ is the solid-solid interface between the_ tained for the case of a solid that Is hydrostatically stresse
18]). For example, for a system involving a hydrostatically

film and a much thicker substrate. The system is constrained §p. sqoq crystalline solid in equilibrium with a fluid, it is possible
that during any change in state, all of the surfaces remain paral 8|define the chemical potential of the solid for compories

and planar, and the areds A’, andA” are equal to each other »=(dU%/N}), where the superscrigtrefers to the value for the

and remain fixed. This means that a change in the volume of Olmsiid as is done in conventional bulk thermodynamics. However
of the phases is a result of a change in dimension along the 3-as>?§ ’ y ’ '

In the case of the thin film phase, the volume of can be express9f & Nonhydrostatically stressed crystalline sofid, for a com-
asAt, and a change in volume of the film is associated with gonent 'ghat predomlna}nt_ly occupies lattice sites is in general not
change in film thickness It will also be assumed that the in-planewe” defined. Instgad,_ it is necessary to define a different param-
dimension of the film is much larger than the thickness so that thjie"» called the diffusion potentiall,, for component$ andk
film edge effects can be neglected. that occupy lattice sites in the solit¥l,, involves the change in
Suppose the film experiences a uniform, in-plane elastic strdffermnal energy of the system when an atom of component h in the
as shown schematically in Fig(t). Let the in-plane components crystal is exchanged with an atom of component k in the fluid at
of this strain be denoted as; , wherei,j=1,2. In order to main- constant entropy, volume, and number of moles of the other com-
tain the constraint that the in-plane aaemains unchanged, it is POnents. Further complicating the analysis is that there is in gen-
necessary for some atomic rearrangement, analogous to a crglgh @ coupling among variations involving the number of moles
process, to result in an in-plane “creep” strain with componenﬁf he dlffert_ant components and variations associated with the
Bri=—e11 and Bay=— &4, (see Fig. 10)). It is noted that this different strains. o _
atomic rearrangement leaves the volume of the fidter it has In order to reduce unnecessary complexity, it is useful to intro-

been elastically straingdinchanged. The in-plane area as a func@Uce certain simplifying constraints and assumptions that do not
tion of strain can be expressed as significantly alter the basic physics of the problem. Each of the

phases will be constrained not to exchange matter with the other
phases, so that there can be no variation in the number of moles of
A:AO_E [1+(eij+Bij) 5], (2) any of the components within the phases. In addition, it will be
h=1 assumed that the bulk of the phases are compositionally uniform,
whereA, is the area at zero strain a®j is the Kronecker delta. and that both of the surfaces can be treated as a Gibbs “dividing
Since the area of the free surface of the filtd, and the film- surface” ([5,7,19). Using this construct, the thermodynamic
substrate interface are are constrained to remain constant anguantities associated with bulk phases are calculated assuming the
equal toA, they can also be expressed as functions of surfap@ses are uniform, even though the actual values of these quan-
elastic straing:;;’, &;;" and surface creep straift; ', 8" tities may vary in the proximity of_t_he surfaces. Any “excess
values of the thermodynamic quantities of the system, equal to the
difference between the actual values for the system and those
A=A, D [1+(ef+B]) 5], (3) obtained assuming the bulk phases are uniform, are then consid-
hi=1 ered surface thermodynamic quantities. Gibbs showed that for
2 fluid systems, this allows a proper accounting of all of the ther-
A=A D [1+ (e +B7) 851, (4) modynamic quantities and will rigorously produce the conditions
=1 for describing thermodynamic equilibrium. Although it may be

Thermodynamic System

Figure Xa) schematically illustrates the system under consider-
ation. It is composed of a thin solid film of thicknesand in-

2

2
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that there is not the same degree of rigor when applying thiseaning of the surface thermodynamic properties, it is noted that
approach to systems involving nonhydrostatically stressed solitlse partial derivatives in the work terms associated with creating
it should be an adequate approximation for the present problew surface area by introducing the creep straiﬁﬁ and 55;3

[20]. Finally, it will be assumed that the bulk of the substratgre related to the scalar quantitigsand , while the partial de-
remains undeformed during any variation in state of the systefyatives in the work terms involving elastic deformations are re-
and that the vapor pressure is much smaller than the magnitudezgéd to the stress tensarg , f;;, andg;; . Itis also recalled that

the coherency stresses in an epitaxial film. the surface stregy; is associated with the surface work when one
phase(the_film) is elastically stretched keeping the phdsiee
Conditions for Equilibrium substratg fixed.

Consideration is now given to the effects of constraining the
asA, A’, and A” to remain fixed at the constant valug,
ing the virtual variation. It is seen from Eq®), (3), and(4)
that these area constraints lead to the relatiéfs,= — de41,
oU ou ou , OB2= — €2y, 5/311: - 5821: 53&2: - 58&21 5,3'1’1: - 58{11
(E) 58ij+(£) 551#(@) de and 8B3,=— dep,. Using these relations, expressing =At
! 'l i =A.t, and employing the assumption thatPsV is negligible

The virtual variation of the internal enerdy as given in Eq. ar
(6), incorporating the constraint that there can be no exchangeoqfr
matter among the phases, can be expressed as

2
SU=TSS—PoV+ D,
=

1

U e U compared to the other work terms, E@1) can be rewritten as

+ —) B+ (—) Sefj+ —,,) 55{}} , (7 )

&Bilj ‘98;3 aBIJ
where the definition¥=(9dU/9S) andP=—(dU/dV) have been Aoi’j
used. According to Eq6), the conditions for equilibrium can be
obtained by setting the variation in E() equal to zero, keeping which leads to the key result:
SandV fixed. Since the entropy can be varied independently of
the other variations on the right-hand side of E4, one condi- toy=(y+¢)&;—fij— gy - (13)
tion for equilibrium is that

1[tUij+fij+gij_(7+¢)5ij]58ij:0: 12)

Equation(13) characterizes the system at mechanical equilibrium,

T6S=T S+ TF oS + T365°=0, (8) and can be considered as representing a force balance between the

film stresso;; and a “surface pressurd’f;; +gi; — (y+ ) &;; |/t.

when the total entropy of the system is held fixed: 7ii P &t 0= (vt 9ol
55= 65"+ 65"+ 65°=0. 9)

In Egs.(8) and(9), the superscripts, f, ands denote vapor, film, Critical Film Thickness
and substrate, respectively. The only way in which Egs.and It is seen from Eq(13) that in the limit of an infinitely large

. . . . _ f_ . .
(9) can be simultaneously satisfied is fof=T'=T®. Identifying  fjim thicknesst, the equilibrium coherency stress, and therefore
T as the temperature means that at equilibrium, the temperaturgns equilibrium coherency strain, of the film approaches zero. As

uniform in the systenicondition for thermal equilibrium the film thickness is reduced, the magnitude of the components of
Substituting Eq(8) into Eq. (7) and setting the variatiodU  he equilibrium coherency stress and strain tensors increase until a
equal to zero gives critical thickness is reached, corresponding to the largest thickness
2 U U U for total_l lattice matching between film and substrate to be thermo-
—PSV+ 2 (_) Seij+ _> 5By + (_,) Se' dynamically favorable. _ N _
ig=1 |\ 0gj IBij Jgj; Equation(13) can be used to determine the critical thickness
when the stress tensors and surface free energies are evaluated at
I ﬂ) 6ﬁ-’-+(£ 68-”-+(£) 8Bl |=0 (10) the strain state corresponding to a completely lattice matched film.
aBj, oleel) Y\ aB " Let the in-plane coherency strain components for such a film be

c - - c
The terms in Eq(10) with the variationsde;; are the work to denotced asjj fori, j=1,2. The other strain components;, ¢33,
elastically strain the volume of the film, and the terms with th@rc‘daas’ as well as the components of the coherency stress tensor
variationsée | and 8¢/, are the concomitant work terms to stretch’i; can be obtained using Hooke's law for plane stress as given in
the free surface and film-substrate interface, respectively. Sirfe@s-(1). A surface force tensds;; can be defined as
the process of atomic rearrangement, as illustrated in Flg, 1 _ e
does not change the volume of the film, there is no work associ- Bij=(y+¢)d;—fij—9;- (14)

ated with the terms involving the creep stradg;;, and thus | ¢ B, denote the value of the surface force tensor evaluated at
(9U/9p;;)=0. The terms with the variationsg;; and 687 rep-  the strain state for a completely lattice matched film. In general, it
resent the work to create new surface area by adding atoms atifhi@xpected that;; and y will be only weakly dependent on the

free surface and film-substrate interface, respectively. Since '@St%erency strain. Recently, a simple model for the surface ther-
shear strain variation$B3, and 687, do not create new area, modynamic parameters of a solid-solid interface suggested that
(aUl3B1p)=(dUl3B1)=0. It is possible to associate all of thealthoughy is expected to have a strong dependence on the strain,
nonzero partial derivatives with certain film or surface parameteg; — #/;; can be taken as approximately independent of strain

so that Eq(10) can be rewritten as ([3]). The critical thickness for epitaxy corresponds to the value of
2 t when the representation ellipgguadrig for Bicj/t makes tangen-
—PSV+ E [fofij58ij A 58i/j+A"y5:8i/j +A"g; 58;} tial cor?tact' with the representation ellipse imj} . This is illus-
ij=1 trated in Fig. 2. Figure @) refers to the general case Wheﬁ
Cc H H Ci Cc
+ A8, 5B 1=0. (11) andB;; do not share the same set of principal axesr;jfandB;;

do share the same set of principal axes, tangential contact is made
In Eq. (11), gy; is the volume stress state of the filfiy, andy are  along one of those axes, as illustrated in Figp) 2In this case, the

the surface stress and surface free energy, respectively, for the fregical thickness can be determined from E#3) using the prin-
surface of the film, and;; andy are the surface stress and surfaceipal values for the tensor components. If the system displays
free energy, respectively, for the film-substrate interface. Constbreefold or higher rotational symmetry about the 3-axis, the sur-
tent with the discussion given previously regarding the physicklce stress tensors can be taken as scélargl g, and Hooke’s
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Domain Dynamics in a
Ferroelastic Epilayer on a
Paraelastic Substrate

Y.F. Gao This paper models the domain dynamics in a ferroelastic epilayer within the time-
Z. Suo dependent Ginzburg-Landau (TDGL) framework. Constrained on a paraelastic substrate
of square symmetry, the epilayer has rectangular symmetry, and forms domains of two
Mechanical and Aerospace Engineering variants. The domain wall energy drives the domains to coarsen. The spontaneous strains
Department and Princeton Materials Institute, induce an elastic field, which drives the domains to refine. The competition between
Princeton University, coarsening and refining selects an equilibrium domain size. We model the epilayer-
Princeton, NJ 08544 substrate as a nonequilibrium thermodynamic system, evolving by the changes in the
elastic displacements and the order parameters. The free energy consists of two parts: the
bulk elastic energy, and the excess surface energy. The elastic energy density is taken to
be quadratic in the strains. The surface energy density is expanded into a polynomial of
the order parameters, the gradients of the order parameters, and the strains. In this
expansion, the surface stress is taken to be quadratic in the order parameters. The evo-
lution equations are derived from the free energy variation with respect to the order
parameters. The elastic field is determined by superposing the Cerruti solution. Examples
of computer simulation are presentedDOI: 10.1115/1.1469000

1 Introduction follows. In Fig. 2b), the two variants coexist and form domains.

The thermodynamics and kinetics of bulk ferroelectric mater{T-O aid the argument, imagine that suitable forces are applied on

als have been extensively studidd]). However, there is little he domain walls, so that the stress state in the old variant is

. . o - unchanged, the stress state in the new variant is equivalent to the
systematic study on the ferroelectric thin filg,3). This paper . old one after the 90-deg rotation, and the substrate remains un-

considers some important issues on the domain dynamics i tossed Consequently, the state in Fi@) Bas the same elastic
ferroelastic epilayer on a paraelastic substrate. Consider a g ergy a's the state in F’ig(aﬂ Now gradually reduce the forces
roelastic epilayer on a paraelastic substrate. The epilayer is m gthe domain walls. and allbw the epilayer and the substrate to
thinner than the substrate. They are coherent, accommodating !

lattice mismatch by elastic deformation. At high temperatures, t
epilayer and the substrate surface both have square symmetry,

have different lattice constants. To compensate for the lattice mis;- \ ~iant state in Fig. @) has lower elastic energy than the
match, the epilayer is under a uniform, biaxial stress state, and ﬁgle-variant state in Fig.(@). That is, when the symmetry is
substrate is unstressed. At low temperatures, the epilayer has rgefy e que to the substrate constraint, the single-variant epilayer
angular symmetry, but the substrate surface still has square symp, |onger the energy ground state. This suggests that Pertsev
metry. Because of the broken symmetry, the epilayer now has twp,, :s assumption of a single variant is excessively simplistic and
variants, equivalent upon a 90-deg rotatidtig. 1). Within the questions the validity of their results.

Ginzburg-Landau framewor§1]), we characterize the ferroelas- * £ig re 3 jllustrates a domain pattern of a periodic array of al-
tic state by two order parameterg; (p,), taken to be the com- (onating variants. The smaller the domain size, the more elastic
ponents of & vector lying in the plane of the layer. If the epilay&thergy is relaxed. Consequently, elasticity drives domains to re-
were unconstrained by the substrate, the two variants would hgyg, “On the other hand, variants coexist at the cost of adding the
different spontaneous strain states, equivalent after the 90-degd 48main wall energy. The smaller the domain size, the longer the
tation. This paper considers the epilayer constrained on the siBjiective domain walls. That is, the domain wall energy drives
strate. It is sometimes assumed in the literature that the enefg¥ qomain to coarsen. The competition between the elastic en-
ground state is a single-variant epilayer on the substrate. This S'@Fﬁy and the domain wall energy selects an equilibrium domain
is illustrated in Fig. 2a). The stress state in the epilayer is uniforngize’ which minimizes the combined eneri$—14)). It is also

and biaxial, with unequal components in the two directions. Thghected that the minimization of the combined energy can select
substrate is unstressed. Assuming that the epilayer is of a sing equilibrium domain pattern.

variant, Pertsev et a[2] showed that the constraint of the sub- Thig paper introduces a model within the time-dependent

strate could alter the Curie temperature and even induce N&#hzburg-LandayTDGL) framework to simulate domain dynam-
phases. , , , _ics in the epilayer. The epilayer may have different properties
However, the epilayer of a single variant on the substrate is b the bulk, particularly if the epilayer is only a few monolayers
the energy ground stat§3-7]). This is readily understood as hick. |t may also be possible that a marginally paraelastic bulk
- crystal is ferroelastic within a few surface layers. Motivated by
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF these considerations. we will model the epilayer-substrate as a
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- inal h ! del llels that f i ith
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Marchsmg__e system. T_ € model parallels that for an epilayer with com-
15, 2001; final revision, December 22, 2001. Associate Editor: D. A. Kouris. Discup0sition modulation[12—14)). In the present model, the free en-
sion on the paper should be addressed to the Editor, Prof. Robert M. MCMeekir@'gy of the system consists of two parts: the bulk elastic energy
Department of Mechanical and Environmental Engineering University of Californias : P
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until ftt%iurr]d the exce_ss .Surface e.”ergy' The elastic energy denSIty 1S t.ake.n
months after final publication of the paper itself in the ASMEU&NAL OF AppLIED (O D€ quadratic in the strains. The excess surface energy density is

MECHANICS. expanded into a polynomial of the order parameters, the gradients

form. After the forces are completely removédg. 2(c)), the
splacements are generally in directions opposite from the ap-
td forces in Fig. ). Consequently, after elastic relaxation, the
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Fig. 1 Broken symmetry and lattice mismatch. The substrate (b)
has square symmetry. The epilayer has rectangular symmetry,
with two variants.
of the order parameters, and the strains. In this expansion, the
surface stress is taken to be quadratic in the order parameters. We
derive the evolution equations from the free-energy variation as-
sociated with variation in the order parameters, and determine the
elastic field by superposing the Cerruti solution. To illustrate the “—>

model, we present preliminary results from computer simulations. p
The TDGL framework has been applied to bulk ferroelastic
crystals([15-17). In a bulk ferroelastic single crystal, however,
elasticity does not refine domains. In fact, the single-domain crys- ()
tal is the energy ground state. The bulk elasticity problem lacks an
intrinsic length scale. For an infinite, polydomain crystal, the total
elastic energy in the crystal is independent of the domain size so
long as the domain pattern is self-similar as domains coarsen. In
this case, domains coarsen to reduce the domain wall energy. The
situation is different if the system is not an infinite single crystal.
For a thin ferroelastic film on a substrafe&—9]), the film thick-
ness provides a length scale. In a polycrystalline crystal, the grain
size provides a length scalgl8,19). In both cases, elasticity
does limit the size of the domains. In the model introduced in this <

paper, the length scale is provided by the introduction of the sur- p
face stress, as will be identified in a later section.
Fig. 2 Schematic illustration of elastic refining; (a) a single-
variant epilayer, (b) a two-variant epilayer with appropriate
2 Free Energy and Kinetic Law forces applied around the new domain,  (c) the external forces

; . removed
Even for a single crystal, atoms in a few surface layers have

different energy from atoms in the bulk. The deposition of the

epilayer further changes the energy state. We model the substrate-

epilayer system as a bulk solid coupled with a superficial object. We assume that the substrate is elastically isotrgplaeing the
The total free energy consists of two parts: the bulk elastic energlgear modulus, anePoisson’s ratio. The elastic energy densily
and the excess surface energy, written as is quadratic in the strain tensor:

: ©)

G=f de+J TdA, @) W=

v 2
8ij£ij+l_—2V(8kk)

whereW is the elastic energy density, ahds the excess surface
energy density. The first integral is over the volume of the entire
system, and the second integral is over the surface area covered by
the epilayer. Following14], we interpret the surface energy as the
excess free energy relative to bulk elastic energy. Thuscludes
the effects of the mismatch between the two materials, as well as
the presence of the empty space above.

In the rectangular coordinate system, the surface coincides with
the (X1,X,) plane, and the material occupies the half-spage
< 0. Reference the displacement vector in the systefnom an
infinite, unstressed crystal of the same composition as the sub-
strate. The strain tenses; relates to the displacement gradient,
namely,

substrate

1
G=L(ui U, 2
#ij= 2 (U uj) ) Fig. 3 A domain pattern in the epilayer constrained on the
The Latin subscripts run from 1 to 3. substrate
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elasticity theory by adding a strain-dependent surface energy to
the free energy10-14. In this paper, we expand the surface
stressf .5 in terms of the order parameters:

fra=fo— %:Bllpi—i_ %,Blng
foo=To+ 3 BraP2— 3 B1iP3 (8)

f10= = BasP1P2-

Heref is the surface stress when the epilayer is in the paraelastic
state. In the ferroelastic state, the surface stress is taken to be
quadratic in the order parameters. The surface stress couples the
domain pattern in the epilayer to the elastic deformation in the
substrate.

The epilayer-substrate is a nonequilibrium thermodynamic sys-
tem. The system can vary by two means: the elastic displacements
and the order parameters. Characterize a virtual change of the
system bysu; anddp, . The free-energy variation associated with
this virtual change is

Landau expansion

Fig. 4 The Landau expansion as a function of the order pa-
rameters. The four wells correspond to spontaneous states.

of J of of
o0G= f L?—L— (97 ((?—G) + (9—‘57]8&] op, dA
The stressesy;; in the bulk are the differential coefficients of the Pa g1 Pap Pa
elastic energy density: s
+ O34~ - 5Ua+0'335U3 dA+ O'ij ]5U|dv
M:Uij58ij . (4) aX'B ’
The repeated subscripts imply the summation convention. 9)

We characterize the ferroelastic state of the epilayer by twoyye a55ume that elastic relaxation is much faster than domain
order parametersy, and p,, which form the components of & g\\itching. At a given time the system reaches elastic equilibrium
vector lying in the plane of the epilayer. For example, when theqiantaneously. Consequently, the energy variation associated

layer is also ferroelectric, this vector coincides with the polarizgg;y, the elastic displacements vanishes, leading to the familiar
tion. The excess surface energy densitg a function of the order eﬁuilibrium equations in elasticity:
S.

parameters, the gradients of the order parameters, and the strai

Following the Ginzburg-Landau formalism, we expahdnto a gij =0, (10)
Taylor series to the lowest terms ), z ande .4 - _
and the boundary conditions:
F=f(p)+fa(Pap) T fap(Peas. (5) ot
The Greek letters run from 1 to 2. The physical content of every 0s=—2L  G4=0. (11)
term in (5) is interpreted as follows. IXpg

The first term in(5) is the Landau expansion. We assume that associated with the virtual change of the order parameters, the
the epilayer has square symmetry in the high-temperature phaggiation of the free energy defines a thermodynamic force,

The Landau expansion takes the following fo(h5—17): namely.
fL=ap+ay(pi+p3) +an(pi+p3)+aspips+as(pi+p3) f
F,op,dA=—5G. 12
+aydpipd+ pipd). ©) P 42

Herea, is the surface energy density of the epilayer on the suB-comparison of(9) and(12) gives that

strate when the epilayer is in the paraelastic phgsg=Q) and

the substrate is unstrained (;=0). The coefficient, is propor- _ [ an _ i( Ife
@ IPe X\ IPap

tional to T—T, i.e., the temperature difference from critical
point, Tc. WhenT<T¢, a;<0, and the function has four wells . . o
(Fig. 4). Each well corresponds to an unconstrained ferroelasti?FOHOW'ng [12-14, we adopt a linear kinetic law that the rate
variant. There is no reason to regard the coefficient$jirto be 0 the change of the order parameters is proportional to the driv-
the same as those of bulk materials. ing force, namely,

The second term i5) stands for the gradient energy, which is ap
taken to be quadratic in the gradients of the order parameters =
([15-17): N

1 2 2 1 2 wherelL is the kinetic coefficient. Combiningl3) and (14), we
fa(Pa,p)= 7 911(P11F P22 +912P1,1P2 2 5 Gaa(P12H P2,1) obtain the evolution equations for the order parameters:

it 0 (e, iy
apa (9XB apa,ﬁ apa

of
én
+ _ﬁpa Eiq|-

(13)

=LF,, (14)

+ %94’14(p1,2_ P21)°. (7) Py

8§,7 . (15)

The g parameters are positive constants. This is a continuum de- at
scription of the domain wall energy. : : _ : .

_ The third term in(5) gives the strai_n depender_lce. We have onlyeﬁlsz\%n (l)r;)ggaier:at?]técfreec]euglr?g%? ;Sn]golfjvl\?s? the divergence theo-
included the linear terms of the strains, neglecting the excess elas-
tic constants of the epilayer relative to the substrate. The latter

could also be included as a refinement of the theory. The coeffi- G=f [futfe— %o‘gauﬂ]dA. (16)
cientsf,,; are the components of the surface stress tensor. The

surface stress tensor has been incorporated into the continuline integral extends over the surface area.
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4mpga
| = ——. (22)
B11Ps

This length scales the size of an individual domain in an equilib-
rium pattern. As stated in the Introduction, the equilibrium domain
pattern is an outcome of the competition between refining due to
elasticity and coarsening due to domain wall energy.

The time scale can be derived from the evolution Ed$),

giving
! 23
T 2a,L” (23)
1 -
P1 P2 We will report time in the unit ofr.
In terms of the dimensionless quantities introduced above, the
B evolution equations become
4
3 Py
5 T P11t ¥1P2.21F Y2P122
BlZ 2:844 ;3
- T( —P1g11t P18~ —— P2g12| +P1— 287,07
9 ‘ ' ‘ ' - B11 P11
0 0.5 1 15 2 2.5

—a1,01Pp5—3a5,;P5 — a1, 4 2p3P5+ P1p3)

spatial coordinate x' (normalized by b) (24)
Fig. 5 Domain wall shape. The domain width is on the order
of b. P2

ot P2 221 ¥1P1,121 Y2P2,11

Pz oi—Poem— e
ﬁll 2¢11 2¢22 1311 1¢12

b
3 Dimensionless Equations, Length Scales, and Time 1
Scale

The four wells in the functiorf, (Fig. 4) correspond to four

states of spontaneous polarization. The value of the spontaneous . ) .
polarizationpy satisfies In the above the strains have to be determined by solving the

elastic field in the semi-infinite solid subject to the following

+p,—2ay,p3

—a1,0,p5—3a5;5P5— a1, A 2p3PT+ PaP7).

a; +2ay4p?+3ay,;p?=0, (17)  boundary conditions on the surface:
giving
_al 12 o :_p@ ﬁ_lzp@_@(pﬁ p&)
pPs= ( = ) (18) 3 Yoxy  Bu 2axy Bul Zaxg  tax,
ay;+aj,—3aga,

We usepg to normalize the order parameters andp,.
Introduce dimensionless parameters

_ P2 | Pz 9Py ,344( Ip1 P2
732 pzaxz ﬁllplﬁxz B

pzﬂ_xl + Pla—xl) (25)

a _allpg a _alng a _3111}3;1 a _alleg
Yoanl T Jall T g T TR ey (;L9) 033=0
o~ ’
legler 944~ 944 3/2:944Jr 944_ (20) Where the stress is normalized BypZ/b. The elastic field in a
911 g1 half-space due to a tangential point force on the surface is known

The driving forceF, in (13) contains three terms. The compari-2S the Cerruti field20]. A superposition gives the needed strain

son of the terms involving, andfg defines a length scale: field:
B j f ( 2(1-3v)(x—¢)
N R B e e

_ 911
b=/ “2a; (21)

This length represents the width of the domain wall in the

Ginzburg-Landau framework. We ugeto normalize the spatial
coordinates. Figure 5 shows the shape of a 90-deg domain wall. In
[15], a boundary value problem was solved to obtain the analyti-
cal result for the 90-deg domain wall. In our work, the simulation
from evolution equations shows similar shape, and the domain
wall width is comparable td.

In (13) a comparison between the gradient energy term and the
surface stress term defines another length scale:
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6v(x—¢£)°
- [(X_§)2+(y_ 77)2]5/2 dfdﬂ

. 2v(y—1)
A= 97+ (y= )7
_ Buly—p(x—§?
[(x= &7+ (y—n)?T"

]dgdn
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2v(x—¢)
822:[ f "31[[<x§>2+<y MEG

_ eux=H(y—n)?

[(x—&)%+(y— )"

) _21-3»)(y-7)
73 T (x— &%+ (y— 9T

- 6v(y—7)°
[(x=&)%+(y— )"

1 _21-2n)(y—7)
22 ) ) 9Ty T
_ 12v(x= 9y n)
[(x— &%+ (y— )2
1 2(1-2v)(x— &)
+§f f"” C[(x=&%+(y— )R
120(x—€)(y— 7)?

C[(x— &2+ (y— n)ZJS’Z}dgd”'

}dfdn

dédyn

dédn

(26)

The strains are normalized b&llp§/4w,ub. The displacements,

normalized byB;,p2/4mu, are

B 2(1-v)
ul‘f f "31[[<x—§>"-‘+(y— S

20(x— £)?
x—§>z+(y—n>2]3’2]d§d”

[(
+ 2v(x—=&)(y—7n)
U3) [(x— &2+ (y— n)?]%?
2v(x=&)(y—n)
uz_ffU31{[(X—§)2+(y_7,)2]3/2]d§d7f
2(1-v)

+f j0'32 [(X7§)2+(y*77)2]112

2V(y— 7’)2

=t (y-7

4 Computer Simulation

] dédy
(27)

)2]3/2]d§d7/-

0.7 4

without substrate

free energy (normalized)
% %
4
4
o

o
|

with substrate

domain spacing

Fig. 6 Free energy versus domain spacing. Without substrate
constraint, the energy decreases as the domain size increases.
With substrate constraint, the energy reaches a minimum at a
specific domain size.

every grid point, the simulation is rather slow. The evolution can
also be simulated in reciprocal spa¢é2—17), which we will
implement for this model in the future.

For a given domain pattern, i.e., a prescribed field of the order
parameters, the free energy can be computed from(E65.(25),
and (27). In the first simulation, we specify a parallel domain
pattern, fix the domain spacing, but allow the domain walls to
relax locally. We calculate the free energy as a function of the
domain spacing. Figure 6 illustrates the effect of substrate con-
straint. The domain size in this figure is the width of the domain
along(x,y) coordinates of Fig. 5. As discussed in the Introduction,
without the substrate, the total free energy of the epilayer de-
creases with the increase of the domain size, and the single do-
main has the lowest energy. With the substrate constraint, since
the competition of elasticity and domain wall energy selects an
equilibrium domain size, a valley exists on the curve of energy
versus domain spacing. For the domains smaller than the equilib-
rium size, the relaxation of the elastic energy cannot accommo-
date the rapid increase of the domain wall length, so the more
domains, the higher the free energy.

Figure 7 compares the domain evolution with substrate and
without substrate constraint. Through every grid point we draw a
short line segment, representing the magnitude and the direction
of the order parameter. The left column shows the result with the

To illustrate the model, we now present several prelimina§ubstrate, and the right one without substrate. In both cases, we
computer simulations. Referring fa6,17], we adopt the follow- Start with the initial condition of a small random perturbation of

ing parameters:
a;;=0.5, a;,=1.74, aj;;=0.063, a;;,=0.148
012/911=1.1, 944/91:=0.9, 04/91,=0.1

b/l :10, 312/311:0051 ﬁ44/ﬂ11:0111, r=0.3.
(28)

We have not carried out a comprehensive parametric study.

the order parameter field from zero, corresponding to the paraelas-
tic state. When the layer is constrained, parallel domains form,
and the domain size approaches to what has been shown in Fig. 5.
When the layer is unconstrained, the domains coarsen, being lim-
ited only by the calculating cell size.

5 Summary
This paper presents a formalism to simulate the evolution of

The evolution equations have both spatial and temporal derivdemain patterns in ferroelastic epilayers. The surface stress due to
tives. We discretize the infinite surface into an array of squarestbie spontaneous strains can be relaxed by the substrate mediated
size NXN. All fields are assumed to be periodically replicate@lastic interaction. Free energy is divided into two parts. One is
from one square to another. Each square is the computation uhi elastic energy of the semi-infinite substrate, and the other is
cell, which is subdivided into grids of spacidg. Spatial deriva- the excess surface energy, which has the ingredients of the Landau
tives are approximated with finite difference. At every time stegxpansion, the gradient energy, and the surface stress. Evolution
the elastic field is calculated by evaluating the double integraksquations are derived from energy variation. Computer simulation
and the order parameter field is updated by using the Eulascertains that the competition of coarsening and refining is re-
method. In our simulation, we udé=128,Ax=1.0, and adaptive sponsible for equilibrium domain patterns. The formalism pre-
time steps. The ratio of two length scale®i$=1.0. The singular sented in this paper is flexible, and can be used to study other
integrals in(26) and(27) are evaluated by adopting a technique iphenomena involving surface phase transition and pattern forma-
the Appendix. Since the double integrals must be calculated fibon.
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time=540

Fig. 7 Comparison of domain evolution in simulations with
substrate constraint and without. The left column is the result

with substrate, and parallel domains can be seen. The right
column is the result without constraint, and the structure keeps

coarsening.
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The integrals(26) and (27) extend over the entire surface. To
save computation time, we only extend the integrals to a finite
square of size 16X 16b in our simulation. The integrals are sin-
gular whenx= ¢ andy= 7. Let e be a small number, say the grid
spacingAx. We treat the singularity as follows:
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S. P. A. Gill

‘w2z | Confined Capillary Stresses
e During the Initial Growth of Thin
«.e | Films on Amorphous Substrates

Division of Mechanics and Computation,

Department of Mechanical Engineering, . o . . L
Stanford University, Changes in substrate curvature indicating the existence of compressive stress in isolated

Stanford, CA 94305 crystallites are commonly observed during the initial stages of thin film deposition of
metals on glass or ceramic substrates. Following the suggestion of Abermann et al. (R.
Abermann et al., 1978, Thin Solid Film§2, p. 215), we attribute the origin of this

V. Ramaswamy compressive stress to the action of capillary forces during film growth. As new atomic
layers are deposited, the capillary forces acting on atoms near the surface are stored as
W. D. Nix transformation strains in the bulk of the crystallites. To test this concept, we propose three

models for evaluating the capillary strains and their induced compressive stresses in a
Department of Materials Science crystalline. A finite element analysis is performed to show that the model predictions
and Engineering, agree well with experimental dat4DOI: 10.1115/1.1469001

Stanford University,
Stanford, CA 94305

1 Introduction related to the induced curvature measured in experiments in Sec-

. . . - .tion 3. The models are evaluated numerically and compared with
Controlling stresses in deposited thin films has become an ”&perimental data in Section 4

portant challenge of microelectronic technology. It is well known

that there are relationships between the film stress and the corre-

sponding microstructure at various stages of growth. Better undér- Models

standing of how film microstructures and stress develop andThe origin of the compressive stress in pre-coalescence crystal-

evolve may lead to better control of final stress states and miciides is thought to be due to surface stress. Here we adopt the

structures in deposited thin films. qualitative picture of these compressive stresses first given by
Film stress, obtained from substrate curvature, has been mé&ermann et al[3] and develop quantitative models to describe

sured during growth of sputter-deposited Pt on amorphous siBe curvature changes in this stage of film growth. The physical

strates of Si@ ([1]) and is observed to be compressive at thickmechamsm idealized here mvolves_ contributions to t_hls_ compres-

nesses less than about 5 A. This can be seen in Fig. 1 whersl Stress from two sourcegl) residual stresses built into the

negative curvature is evident due to the compressive stress. -ﬁ%s_tallltes during growth by capillary forces a(@ stresses as-

stress changes to being tensile in thicker films, leading to a tensﬁ%%?}t%? :%Ighsgl?aggplllary forces exerted by the current configu-

maximur_n atabout 33 A, after which _the stress b_ecomgs COMPreSus discussed by Abermann et &B], during deposition an is-
sive again. The development of tensile stresses in the intermedigig, js under compression due to surface stress. While the island
stage is thought to be due to crystallite coalescéf®¢and those js small the surface-induced stresses significantly deform the
in the later compressive stage due to “peening.” Such stress Rgomic lattice of the island. This deformation is considered to be
havior is commonly observed during the deposition of high maocked into the system during growth as bonding at the island-
bility metal films by evaporatiori[1,3,4,5). substrate interface occurs while the island is in this compressive
In this paper we focus on the origin of the compressive strestate. Assuming that no interfacial slipping or plastic relaxation
during the initial stage of film growth. This compressive stress i¥ccurs, the compression in the island due to its surface stress can
observed when the film is not continuous but consists of a numtg represented by a transformation stress. This stress depends on
of isolated crystallitegor islands. Following the suggestion of the growth history of the island and also on how one conceptual-
Abermann et al[3], we attribute this stress to the action of capizes the growth process. As there is little fundamental information
illary forces during growth. We envision that, as new layers din these aspects of the problem, three models for the equivalent

atoms are deposited, the capillary forces acting on atoms near }Tr%wsformation stress will be proposed for comparison. Analysis of
al

free surface become stored as transformation strains in the bulk!gf¥! Micrographs of pre-coalescence of films indicates that the
nd heights are approximately half of the average base diameter

the crystallites. Three models for evaluating the capillary strai ). Hence we assume that the islands are hemispheres of radius
and their induced compressive stresses in a crystallite are p -a's shown in Fig. @). Thex-y plane coincides with the sub-
posed in Section 2. The capillary strains stored in an island aggate surface, the origi® is at the center of curvature of the

E— _ o island, and the verticat-axis is an axis of rotational symmetry
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF which acts out of the substrate.

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . > .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, March FOT @ solid surface, it has been pointed @61) that one needs

15, 2001; final revision, December 10, 2001. Associate Editor: D. A. Kouris. Discuto distinguish between surface energgnd surface stregsWhile

sion on the paper should be addressed to the Editor, Prof. Robert M. McMeekifge surface energy defines the reversible work to form a new
Department of Mechanical and Environmental Engineering University of Californiag : _
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until fc%frface by a pro_cess such a.‘s Cleavage’.surface stress is the revers
months after final publication of the paper itself in the ASMEUZNAL OF AppLIED  [DI€ work per unit area required to elastically deform a surface so

MECHANICS that it is commensurate with the bulk. These two quantities differ
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Fig. 1 In-situ curvature versus nominal thickness for a Pt film
deposited on a SiO , substrate

(a)

in fundamental concept but are usually of the same order of mag-
nitude. We will use surface stress to calculate the capillary forces.

uniform pressure of 2—f

discontinuity in surface
tension generates
distributed peripheral

/ force of 27fR,

2.1 Spherical Layer Transformation Models

2.1.1 Spherical Layer Model (Model I).Imagine that an is-
land grows as a number of hemispherical monolayers. These lay-
ers are always complete and hence we can simulate the growth
process by simply increasing the number of layers. Each layer
forms under the action of the current surface capillary pressure
due to surface stress

2§ loading due to capillarity
P(R)= — (2 1) history is represented by a
TR ’ transformation stress

wheref is the surface stress of the island @ the radius of the
spherical layer. Consequently the state of compression in the is-
land will not be uniform as it grows but will decrease as the layer (b)
radius increases. Consideration of an infinitesimal element in
thin spherical shell under radial loadi®fR) yields a stress dis-
tribution of ([7])

F%. 2 (a) The problem geometry, (b) the loading on the island
and substrate due to current capillarity and capillarity history

o,=—P og=0¢=—"P— %= (2.2)
f
where the R,0,®) spherical coordinate system has been used P(r)= r (24)

and all shear transformation stresses are zero. The spherical radﬁll . . . .
distanceR is the distance from the origi®, © is the horizontal WHErer is the radius of the hoop. As before, consideration of the

angle between the-axis and the projection of the radius into the>reSS Staté in a thin plane stress hoop element subject to radial
x-y plane, andb is the vertical angle between the radius and th9ading([7]) yields

x-y plane. If the pressure is constant then a hydrostatic pressure

distribution results as expected. As new atomic layers are depos- o=—P o,=— P—ra o,=0 (2.5)

ited, atoms near the surface become embedded in the crystallite

and attempt to change to their normal bulk state. This shift @fhere the (,6,z) cylindrical coordinate system has been used
reference for the stress-free state is represented by transformatiad all shear transformation stresses are zero. The radiuthe

stresses horizontal distance from the origin ardlis the horizontal angle
o ¢ betv_veen the radius a_md thxeaxis. As new atom_ic Iay_ers are de- _
oh="— Ug: 01):__ (2.3) posited on a crystallite, the stress-free state is shifted from this
R R compressed state to the normal bulk state. This shift is represented

2.1.2 Cylindrical Layer Model (Model Il). In this model the by transformation stresses

adatom attachment process during the growth of a new spherical + f T T

monolayer is assumed to initiate at the perimeter of the island’s o=y 0p=0,=0. (2.6)
base. In this case, it is imagined that a single hoop of atoms

initially forms on the substrate around the base of the island and2.1.3 Current Capillary Forces. The above concentric layer
then the layer is completed by further deposition on top of theseodels account for the residual stresses locked into a crystallite
peripheral atoms. It is in the initial hoop formation stage that theéuring growth due to its capillary history. This does not take into
bonding of the layer to the substrate occurs. In this situation tlaecount the effect of the surface stress on the island in its current
initial hoop of atoms can be considered to be subject to a surfamanfiguration. To do this it is necessary to apply a uniform pres-
stress in the plane of the island-substrate interface such that sluee of 2f/R, over the surface of a hemispherical island of radius
magnitude of the capillary pressure experienced by the hoop i$R,. The surface stress must also be balanced at the periphery of
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Fig. 3 A simplified model of the problem as a beam subject to a pure bending
moment

the island where the substrate-island, island-vapor, and substrégegenerated in the bulidenoted by superscrij), and a variable
vapor interfaces meet. We assume that the substrate-vapor surfemap stress
energy and the substrate-island energy are identical. This means
that the surface tensions are automatically balanced in the plane of s s 2Es"
the substrate surface and that the island will adofstem) hemi- ToTToT 31y
spherical shape. The island surface stress acts vertically upward
from this point and must be included in the model. The resultagt
force will be balanced by deformation of the substrate.

The combined loading on the island due to the capillary histo
(0';) and the current capillary is shown in Figb2

RS RS

(Rb)3 213

generated in the surface lay@tenoted by the superscrigt,
whereR<r<R+Db. The surface hoop stress is equivalent to the
Yrface stress induced by the surface tension, u§=oy,
=f/b. Assuming the surface layer thickness is much smaller than

2.2 Local Transformation Model (Model 11l ). Itis natural the bulk dimensiont§<R), this is the case it"=(1—v)f/Eb.
to assume that the island atoms in contact with the substrate areTélerefore the corresponding hydrostatic transformation stress re-
in the same atomic plane and that there is no plastic deformatiguired to transform from a surface atom to a bulk atom is
of the atomic structure of the island during growth, i.e., it is a .
perfect crystal. These two requirements imply that an island al- 1.1 Ee o (1-p)f
lowed to relax its residual stress state by removing it from the Trm %0910, T (1—2v) b
substrate should experience no other stresses besides the normal
capillary pressure. This is not the case for the concentric laywhereb is taken to be the effective thickness of the surface mono-
transformation models described above, as the nonuniform natl@ger. Imposing a uniform expansion in the bulk of a free droplet
of transformation stresses induces Poisson effects which distexcluding the surface monolayer immediately generates the ex-
the relaxed island. An implicit assumption in these models is thaected capillary pressute?= 0'%= ag= — 2 f/R within the drop-
the current capillary pressure is alwayd/R or f/r, which is let.
strictly true only for a free-standing spherical or cylindrical drop- For a thin film deposited on a substrate, we assume that all
let free from the substrate. Furthermore, these models have #tems in a crystallite experience the same surface-to-bulk trans-
geometric restrictions to hemispherical or cylindrical crystallitedormation given by(2.7) during the deposition process. We at-

In order to relieve the above limitations, we propose a localibute the origin of the compressive stress in the crystallite to this
transformation model in the following. The origin of the capillarytransformation. Since adatoms are attached while they are in the
pressure is thought to be due to the difference between the natswaiface state, the crystallite would be stress-free if all the atoms
lattice parameter of the surface atoms and that of the bulk atomsere in the surface state. The surface-to-bulk transformation
We imagine that a crystallite would be stress-free if all the atontauses a compressive stress to be developed within the crystallite.
were in the surface state. Consider a sphere of raRligpresent- This model naturally returns to the state of free crystallites when
ing the bulk material enveloped by a concentric spherical shell tife substrate is removed and is not limited to hemispherical or
thicknessb representing the surface layer. Apply a uniform thereylindrical geometries. There is no need to assume that the current
mal expansion of " to the sphere to transform its lattice spacingapillary pressure remains in the form of /R as the crystallite
from the surface value to the bulk value. Lasmequations for grows. In fact, due to the substrate constraint, the current capillary
spherical symmetry{7]) can be readily used to find the elasticitypressure is expected to be smaller thaifR because the crystal-
solution to this problem. It is found that a constant hydrostatige will not be able to expand the same amount as a free droplet.
stress In the case of a free droplet, we could alternatively start with

the statement that the droplet would be stress-free if all the atoms
3 were in the bulk state. Imposing a uniform contraction given by

R -1 (2.7 in the surface monolayer also generates the expected capil-

(R+b)* lary pressure 2/R. However, thisbulk reference stateannot be

2.7)

, 2EeT
P =
®3(1—w)

b_ b_
O, =0p=
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directly applied to the film deposition process because adatoffable 1 The a parameter is equivalent to the curvature pro-

are attached to the crystallite and the amorphous substrate wisiged by a dense packing of pre-coalescence Pt islands with

they are in the surface state. unit surface energy density on a SiO , substrate of unit thick-
ness. It is given here for 13 different types of capillary loading.
Where one transformation stress is shown, the other transfor-
mation stresses are zero. These contributions can be easily

3 Induced Curvature Model for an Isolated Island used to calculate the curvature due to combined loads as they
are simply additive.

Consider the simplified geometry shown in Fig. 3 where a

hemispherical island of height and radiRg sits on top of the Parameter Loading Type Value
center of a cylindrical section of substrate of radiuand depth an Current Capillarity Pressure 0.229

ts. We assume that the relaxation strain in the island and substrate o, o,=—Ry/r 0.115

is of the form of that found in a plate subject to a uniform bending ac Ty= —So;r 8823

H a g,=— r —U.

moment such that all the strain components are zero except a[é 0;2 _RglR 0014

e a ge=—Ry/R 0.011

Er=&y= ~KZ (3.1) g Te=—Re/R 0.020

where z' coincides with thez-axis and is the vertical distance ’Z‘YH gfz:% 8'8?2

from the neutral plane of the island-substrate assembly and the a; U‘Z’:,1 —0.044

curvature,k, is the two-dimensional curvature in thez plane. ag or=-1 0.009

This is taken to be positive if there is a tensile stress in the island, a ge=-1 0.016

ay gp=—1 0.003

i.e., the island contracts and the assembly is concave. The island is
assumed to be thin compared to the substrate so that the neutral
plane can be taken to coincide with the neutral plane of the sub-
strate in isolation, i.ez’ =z— :_ths_ In reality the strain field in and
around the island is quite complex but we can test the validity of — —

i : : Edll? Et’R3
this assumption later. It should apply near the base of the island ss- | TisTo
where its free surfaces are sufficiently constrained by the sub-

12 4
strate. This is the most important region for transmission of stre - ' . _
into the substrate. Near the top of the island the stresses will reé@opts the minimum energy configuration such #atdx=0 so

U= 77( «?+ mytR3Kk+ constant

much more readily. This effect will be taken into account by the 67 (R, 2
adoption of a numerically calculated geometrical parameter. K=———|—
We use an energy method to determine the form of the relation- Est§ L

ship between loading, island size, and induced curvature. The total

. 1 . . .
elastic energy in the systert, has contributions from both the ilseSL;g::]qgffotﬁésétr;i;rllvﬁglolﬂzﬁ tﬂ?;g?\;‘fr\s/g'i\{eisaséurggggqhi??ﬁé
island U;) and the substratdJ;) such that y prop

actual curvature for a hemispherical island subject to this type of

1 T T transformation stress is
U:US+Ui:— (O'”_(T”)(Sll_slj)dv
+

2 s i K= — CYAAKO (33)
whereV; andV; are the substrate and island volumes,ands; where
are the transformation stress and strain componentsggnand 6
g;; are the stress and strain components taken with reference to Ko=;,
this transformed state. Esti
The transformation stresses are applied to the island only so the . . . .
elastic stored energy in the substrate is simply a is a numerically determined geometrical parameter which de-

pends on the type of loading, arg = RS/L2 is the areal fraction
1 1 :'zlts L _ o . for this geometry. A distribution of islands can be considered to be
Us:g ojedV=— 1 2(Egxz')%.2mrdrdz a collection of these subproblems. Variousparameters have
v 2B/ -3tJo been calculate¢see Section 4)2and are given for different types
123 of loading in Table 1. For the case considered hereag. By
E. ™ s 2 (3.2) superposition of linear elastic solutions, the combined effect of
° 12 more than one of these loadings is simply additive. For instance,

S

— . o . from (2.1) we find for model | thato=2ag+ ag+ag. The va-
where E;=E;/(1-vs) is the biaxial modulus determined from|igity of Eq. (3.3) is tested in Fig. 4 for a loading of type B for Pt
the Young's modulusEs, and the Poisson ratio;s of the sub- jsjands on SiQ. The parametewy is found to be approximately
strate. ) ) _ ~invariant of the island size except for an edge-effect as the island

To illustrate the calculation of the elastic energy In the |S|angpproaches the edge of its catchment area. Awe|ghted mean value
we consider the transformation stress staté2o2) proposed for of « over the growth life of the island is taken. Two examples of
model Il. For the assumed cylindrical geometry this gives the other types of loading are also shown in Fig. 4. The current

1 [td2+Ro (Ro £\2 capillary pressur¢loading type A has a more pronounced edge-
U=—o f ( —Exz' —~| +(—Ekz')?|2mrdrdz’ effect but in generak, and ay both remain approximately con-
" SE ty/2 0 : r : stant. Again, weighted mean average values for Pt or, i@
: quoted in Table 1.
Et2R3 Model lll is fundamentally different from models | and Il. In
=r—2 2,24 mftR3x+ constant this case the curvature scales with the volume of the island rather

than the surface area. In addition, the problem is no longer scale

where the biaxial modulus of the islanﬁ-,:Ei I(1-w), is de- invariant as the ratio of the thickness of the surface layer to the

termined from the Young's mOdUIuEi , and the Poisson ratio, 1t is useful to note that this method derives the Stoney forn{@h of Eq. (4.1)

v;, of the island _material- for a continuous film Ry=L) of thicknessty subject to a uniform tensile transfor-
The total elastic stored energy mation stressry.
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Fig. 4 \Variation in a-parameters with the relative island size,
Ry /L. The parameter remains approximately constant for small
island sizes but there is a pronounced edge-effect as the island
perimeter approaches the edge of the island catchment area.
This effect is most obvious in the case of the current capillarity
loading (type A). The effect with other loading types is similar
to that shown for loading types B and H. The constant values
quoted for a in Table 1 are weighted averages over the growth
period of the island,
stant volumetric growth rate is assumed.

island radiusp/R,, depends on the chosen length scale. There-
fore the induced curvature for model Il ¢2.7) can be expressed

in the general form

1-v) R
aT(b/RO)Q _OA

K=" (1-21) b

AKQ

wherea is a dimensionless geometric parameter which is a func-
tion of b/Ry. Finite element calculations for this function are
shown in Fig. 5. When the island is smaR{<5b) it is less
effective at bending the substrate as the transformed “bulk” v
ume is small compared to the initially stress free surface layer.

Isa(n)n®dn, where p=R,/L and a con-

0.8 4 .

0.6

& experimental data

0.4
best fit for (3.5)

0.2 o

0.0

T T T T T T 1

0 4 8 12 16 20 24 28
nominal thickness, t

Fig. 6 A comparison of the areal fraction model of (3.5) with
experimental data (1). The best correlation is obtained with a
grain radius of L=40 A.

at this stage. Hence it is proposed that a reasonable model for this
parameter is the large island asymptotic valueagt ay+ a
+ apy -

3.1 Summary of Three Different Models. Based on the
relationship(3.3) derived in the previous section, the three stress
state models of Section 2 result in the following expressions for
the induced substrate curvature:

K= —(aa+2ap+ aptag)Apkg

ki =—(aatap)Apko
(1-v)
(1-2v) b
(1=v) L .,

=*(aK+aL+am)m5AA Ko

Ky =—(axta +ay)

(3:4)

O*'gere it is interesting to note that model 11l differs fundamentally

m models | and Il in the sense that the former predicts that the

the island gets very largdd(R,— 0) the effect of the surface layer

becomes negligible andv;— ax+a +ay, the sum of the redicts that it does not

a-parameters representing a vol_umetrlc expansion without a SBr'It is clear from the above that, apart from basic material and

face Iaygr. In gene_ral, _the stress induced in the surface layer by Hépometrical parameters, the only growth state variable required to

volumetric expansion is much less than the free surface dtfess now the current stress state is the areal fractiyn, Given the

This is because the expansion is heavily constrained by the uno’(er- - A T o )
rg";gometry in Fig. 2a) the areal fraction is simphA,= 7R/ 7L

lying substrate. In practice the curvature is not sensitive to tie 2 .
behavior ofa; for small islands as the areal fraction is very smalf” (Ro/L)". Conservation of mass demands that the volume of the

induced curvature depends on the island size whereas the latter

0.030 4
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Fig. 5 The geometrical parameter
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a7 varies with island size

given a constant surface layer thickness b
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islands is equal to the volume of material deposited such that

327R3=mL2t;

. St_f> 213

AmlaL)
This is a very simple model which assumes that islands all nucle-
ate a distancel2 apart at the start of deposition and that no further
nucleation takes place during growth. However, the comparison
with experimental measurements in Fig. 6 shows that it provides,
coincidentally or otherwise, a very good description of the geo-

metrical evolution of this system and therefore this expression
will be utilized in calculating(3.4) in this paper.

which implies that

(3.9)

4 Numerical Implementation

4.1 Finite Element Model. Due to the nonuniformity of the
expected deformation field, the model is implemented numerically
using the finite element method. The problem is assumed to have
the geometry shown in Fig.(®. An individual island can there-

JULY 2002, Vol. 69 / 429



L e i ~ Table 2 Properties of materials considered in this paper

.//—.——’—‘
o/ , - n
" - Young's Modulus Poisson Ratio  Surface Energy
2 08- /’ Material E (GP3 v v (JI?)
[
3 » Sio, 74 0.23 -
S oe Pt 168 0.38 2.5
3 ™ Cu 130 0.34 1.75
o Ag 83 0.37 1.25
£ * Pd 121 0.39 1.95
B 0-4—/ Ni 200 0.31 2.3
5 Mo 329 0.31 2.85
5 1 W 411 0.28 3.2
5 o024
E?
o0 g T T T T T e By comparing this theoretically predicted value with the value

calculated by the finite element model for a uniformly stressed

continuous film on a relatively thin substrate of thickneBs,a

Fig. 7 Comparison between the substrate curvature obtained representative small thickness can be chosen from which the thick

from the finite element analysis, &, and that predicted by the substrate results can be satisfactorily extrapolated. The results of

Stoney formula, ., with varying substrate thickness  D. ltcan  such a comparison are shown in Fig. 7. It is clear that the model

be seen that the two models converge for large substrate thick- works and that the correct curvature can be predicted to within 10

nesses above 100 times the film thickness ;. percent using a substrate that is 100 times the film thickness.
Thicker substrates cause numerical problems as the finite element
stiffness matrix becomes nearly singular and so we have taken
D=100R, in subsequent calculations.

fore be analyzed in isolation from the others and the problem can . ) )

be reduced to a two-dimensional axisymmetric one. The thicknes#-3 A comparison of the Three Capillary History Models

of the substratet,, is much greater than the radial span of thér Pton SiO,. The three curvature models defined in E@s4)

catchment areal., by four to five orders of magnitude. Finite@ré evaluated for the Pt on SiGystem using the numerically

element analysis of a problem with such an extreme aspect rati¢ficulateda-values in Table 1. The material parameters are given

numerically problematic and unnecessary. Any nonuniform defdf Table 2. The results are compared with experimental measure-

mation of the substrate will occur local to the surface and so onfyents ([1]) in Fig. 8. The substrate thickness used fis

a small representative deptd, of the substrate needs to be con=110um. The areal fraction model ¢B.5) was used. The ma-

sidered(where D<t,). Results for a thick substrate can be exterial parameter for model Ill in3.4c) was taken to bd./b

trapolated from these thin substrate calculations as it is known tiad4-5 based on the best fit ¢8.5 to the experimental areal

globally the substrate is subject to a pure bending deformatidfaction data forL=40A and the lattice spacing for Pt for the

Geometric boundary constraints imply that the outer boundary 8rface layer thickneds=2.775 A. In this cas¢€3.4) can be writ-

the substrate sectiorr £L) must remain linear and hence thet€n

radial displacements of this boundary must be a linear function of _ -~ -~ 323

the axial Fc):oordinatez, as shown in Fi{;. 3, as expressed(®l). 1= K= 0.0008,= —0.0038, =~ 0.000437

These const(aints on the b(_)undary displ_acements are enforceq by K|, = KKe—0.0016\ = — 0.0046M , = _0_00051?/3 (4.2)

the introduction of appropriate Lagrangian terms into the varia-

tional functional of the elastic potential used in the finite element Ky = —0.0138\32= —0.00052,

analysis. Six-noded triangular elements are used. The substrate

mesh is quite coarse far from the surface as the displacement field

is highly predictable in this region. The capillary history transfor-

mation stresses are calculated in the axisymmetric coordinate sys-

tem at the elemental Gauss points and are incorporated into the

nodal force matrix. The forces at each node on the island surface

due to the current capillary pressure and the vertical surface ten- 0

sion at the edge of the island are also added into the nodal force

matrix. The transformed island is allowed to expand and relax its

internal elastic energy subject to the constraints placed on it by the

substrate. The vertical angular rotatidrof the radial perimeter of

the substrate is obtained and the curvature calculated ftom

=9/L.

4.2 Testing the Thin Substrate Assumption. As discussed
above, the aspect ratio of the problem using the actual substrate
thickness is extreme and therefore it is necessary to extrapolate
information from an analysis of a system with a substrate of sig-
nificantly reduced thickness. The Stoney formula is used to test

substrate-film thickness ratio, D/to

/
!

-
curvature (m )
,
N
T T T T T T T T T T T

and validate this proposition. This formula demonstrates that, for a (I) = ; — J; — 6I — é —
thin continuous film on a thick substrate, the induced curvature in nominal thickness (A)

a substrate due to a tensile stregsin a film of thicknesst, is

inversely proportional to the square of the substrate thickigss, Fig. 8 Comparison between compressive stress curvature

-3x10™

3

such that predictions of (4.2) and experimental results ([1]). All three
models are of the correct order of magnitude. The models are
6oty only valid before an appreciable amount of island coalescence
Ks=—7 (4.1)  occurs and tensile stresses start developing in the film. The
Ests experimental data indicates that this is around 5 A.
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Table 3 a-parameters for materials with the elastic properties given in Table 2. The parameter y(a,+ ag) gives an indication of
the relative magnitude of the curvatures predicted for model Il of (3.4). The a-parameters are not strongly dependent on the elastic
properties of the materials and it can be seen from the rightmost column that the variation in their surface energies is more
significant in determining the induced curvature.

Material ap 2agtaptag ag agt+a tay y(ap+ ag)
Pt 0.229 0.059 0.115 0.028 0.860
Cu 0.196 0.087 0.133 0.041 0.575
Ag 0.163 0.088 0.155 0.042 0.398
Pd 0.212 0.064 0.131 0.030 0.669
Ni 0.215 0.082 0.111 0.038 0.750
Mo 0.222 0.061 0.085 0.030 0.875
w 0.212 0.061 0.076 0.029 0.950

where in models | and Il the current capillary contributes a cumechanism by which a negative curvature is produced is shown in
vature ofkc= — apAako= —0.003R, . All three models predict Fig. 9. Essentially the capillary forces bend an island’s edges up-
initial curvatures of the correct order of magnitude. The approxivards and push its center downwards. This downward central
mation made in derivind4.2c) for model Il slightly overesti- movement exerts a pressure on the substrate below, which is dis-
mates the curvature fa;<<2 A. The scatter in the experimentalplaced radially outwards from the axis of symmetry generating a
results is sufficiently large to make any detailed correlation diffaegative curvature. This effect is more dominant if the island has
cult. These models cease to accurately represent the stress staiégh Poisson ratio and high Young’s modulus. In fact, if the
once the islands start to coalesce at a nominal thickness of ab¥aung’s modulus of the island material is reduced below 50 per-
5-6 A as tensile stresses begin to develop. This is thought to ¢&nt of that of the substrate material this mechanism is no longer
due to island coalescen¢fs)). apparent and the current capillary pressure generates a positive
curvature.

4.4 Dependence of Curvature on Elastic Properties and  For model Ill, the underlying physical arguments suggest that
Island Shape. The above results indicate that the compressii@e substrate constrains the expansion of the bulk atoms to their
stresses present in islands on amorphous substrates in the eglyilibrium lattice spacing. This results in the induced surface
stages of growth are fairly insensitive to the model chosen iress being much less than that for an unconstrained crystallite.
predict them. This has also been found to be the case with varyipgiite element calculations indicate that the maximum induced
the island shape. Assuming semi-spherical islands, the dihedsgiace stress in this case is less ti&k0. This suggests that the
angle between the island surface at its perimeter and the substia{@ies forf used in models | and Il are excessively large. If this
surface was varied from 60 deg to 90 dégmisphere The cur-  were the case, these models would not predict induced curvatures
vature was found to vary by only 10 percent over this rafdfe  of the magnitude observed experimentally.
spite a 30 percent change in volunaad no strong dependence on
island shape was observed. 5 Conclusions

A number of other materials suitable to this type of experiment . .
were considered. They and their material properties are listed in//e have developed three models to explain the compressive
Table 2. The relevant-parameters for the three models derived istress in isolated crystallites during the initial growth of thin films

this paper are given in Table 3. It is found that, although tH&" amorphous substrates. Models | and Il account for contribu-

elastic properties of the deposited material do affect the induch@nS 0 this compressive stress curvature due to the effect of
curvature, the surface stress is the more dominant factor. In g&ignsformation strain accumulated inside crystallite layers during
osition and that due to the capillary forces acting on the sur-

eral, the elastically softer materials such as Cu, Pd, and Ag h £ th li h buti found 1o b
larger contributions from the capillary history. This is because tHc€ Of the crystallite. These contributions are found to be com-

induced curvature depends on the transformation strain in the Rarable for Pt on Sipalthough this depends on the elastic prop-
land which is inversely proportional to the Young’s modulus of"i€S Of the system under consideration. Model Iil is a local
the material, as the transformation stress is not dependent on figgsformation model in which we assume all atoms in a crystal-
elastic properties. The origin of a negative curvature from tHi€ experience a surface-to-bulk transformation strain during the
current capillary contribution of models | and Il requires som@€Position process and attribute the origin of the compressive
explanation as one might expect from examination of these forcai&eSs In the crystallite to this transformation. Model I naturally

in Fig. 2b) that they could produce a positive curvature. ThEEUTNS to the state of free crystallites when the substrate is re-
' " 'moved and is not limited to a particular island geometry. Although

model IlI differs fundamentally from models I and II, the induced
curvatures predicted by all three models seem to agree equally
well with the existing experimental results. As noted earlier, the
@ curvature predicted by model Il increases with the island size
whereas models | and Il do not. Hence it would be of some inter-

est to conduct further experiments with different island sizes to
clarify this distinction between these two approaches.
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Introduction ing with the indentation size effect emphasized depths of penetra-
Material length scales have been a subject of great interest'y 9reater than 100 nm and atomic force microscopy had em-
nearly all engineering and science disciplines. Of large interest asized nm level contacts, we recently e_valuated two materials,
the mechanics/materials community are those material len 0 crystals of aluminum qnd tungsten, in the regime of 10 to
scales in the 0.1 to 1@&m regime, that have been investigate hO nm([l_;]). 'Ag t?]e sug?esnon of lBaskes and ngstfme{\l@] both
with small volume torsion wird[1]) and nanoindentatiof2,3]) o consl e”re tdehsur ace Itlo (\jlo ume raélo Ito be key, we bot d
experiments. The principle theoretical treatment, with origins i pre”men;a y and theoretica yh etermined p a?uE_zone SIZEs an
gradient microstructure analysi§4—7]), has been the use of urfaces of contact to assess the importance of this parameter. At
the time neither research group had a physical rationale of why

strain gradient plasticity approachg4,3,8—10). Most effective hi ; L .
; : - : .this was important except that atomistic simulations on the one
in tying the materials and mechanics approaches together 'éi 5 (19) apnd an expefi)mental evaluation on the otif&7])

ey o e oSt 5/70 gOeed Tl srface (o VoL, Was the crlca
Nix and Gao[3]. This utilized the time-honored strain gradient%g%mlzeé?éwi; gi]zn‘&rg(s)%nkjt:v% ,2?:2 grr::igutsw& (;nf%rrecmiig”als
from geometrically necessary dislocation relationship$1]) 0 P

. i ; evaluations of possible contributions to contact forces. First, how-
which have been repeatedly verified by experimgaf12]). ever, it is appropriate to briefly review the background of two

In the same time frame, propelled by the discoveries of SCalkcent studies and a hierarchy of scales that may influence contact

ning tunneling and atomic force microscopies, principally th . : ;
physics and chemistry communities addressed much lower contg(l)cr{‘:eS and therefore any indentation size efi¢8t).
forces in the nanonewton regime and examined various nanotri-
bology issues. As polymer surfaces came under scrutiny, such
probes were elevated to largeN forces by using stiffer stainless Background
steel cantilevers and previous continuum models are being used t
examine adhesive forcégl3]). These involve using the Johnson : )
Kendall Roberts(JKR) ([14]) and Derjaguin Mu?ler Toporoy Number of times; e.g., in 1970 Gane and @] demonstrated
(DMT) ([15]) approaches, and later an incorporation of a DugdaiBat in Au single crystals that hardness coul_d be increased by a
zone to smoothly obtain the JKR/DMT transiti¢ii6]). factor of three by decreasing the contact diameter frorh thO

In the region of scale between these atomistic and grad|e¥qz _nm. A rekindled _inte_rest in the |SE was fostered by the avail-
microstructure regimes, there are possibly one or more phenofility of depth sensing instrumentati¢i21]) and nearly two de-
ena that may contribute to an indentation size effect. It is ogAdes later, Stelmashenko et [@2] showed a similar hardness
intent here to review briefly a number of these effects which cdfcrease at shallow depths in various orientations of single crystal
be related to small volumes under contact. This is possibiéngsten. They also had a reasoned explanation in terms of the
through some recent nanoindentation res(lt¥]). Specifically, local dislocation hardening due to geometrically necessary dislo-

because the previous experimental body of literat[@eg]) deal- cations. The hardnessl, was given by

?nterest in the indentation size effedSE) has resurfaced a
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final publication of the paper itself in the ASMEPURNAL OF AppLIED MEcHan-  ground dislocation density, cgtthe wedge shape, antithe di-
ICS. agonal of a Vicker’s hardness diamond indenter. Using a reason-
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) ] (nm) ) o Fig. 2 Average strain gradients, x, versus depth of penetra-
Fig. 1 Hardness as a function of contact dimension in (100) " tion, &, into (100) W (open symbols ) and (100) Al (closed sym-
tungsten crystals showing the ISE bols) crystals. Four different diamond tip radii used in each

case.

tions at greater depth. For that reasonaghhocmodel was ini-
tially determined based upon the obsenad ratio which was
able value ofAa~ 1.5, the fit to both their data and more recenfound to first order to be[17])
data for spherical tip$[17,23,24) is seen in Fig. 1 for single
crystal tungsten. This agreement is remarkable considering that
the spherical indenters ranged from 85 to 5000 nm in radius, the
Vicker’s indenter is a sharp, four-sided pyramid and StelmasheBiven that even in this small scale range that the plastic zone size
ko’s data represents five crystal variants while the present datdsiglescribed well by Johnson’s cavity modg29,30)) one can use
only for (002). Note thatd/2.5 is used for the comparison to make
equivalent areas of contact for the two types of indenter tips. As — 3P A3)
some of the low data points for the spherical contact radii, 2moy

represent contact depths of only 10 nm, the scatter observed cqptbrep is the applied indentation load and is an appropriate

be partla!ly a result of su_rface roughnefas,26)). . flow stress. Coupled with Eq2) it was shown that a first-order
Such findings along with other observed material scale ?ﬁeais?ediction of the ISE could be madgL7]). This still wasn't sat-

led to a phenom_enologlcal theory of strain gradient plast|(:|_ty ¥fying, however, as there are no principles of physics or mechan-

Fleck and Hutchinsofl,27] and somewhat later to a mechanismics jnyolved that would explain the indentation size effect.

based strain gradient plasticity theory by Gao ef@. While the 5 can take another look at @) and see that if the contact

mechanism-based theory cé®)), it is generally recognized that area, ma?, is coupled to a hemispherical volume of deforming

such strain-gradient plasticity theories should not be used at v ; 3 Lt ; ;
shallow depths in the vicinity of 100 nm or less. Also, such sm terial, (2/3yrc”, then a surface-to-volume ratio can be defined

size scales become close to the realm of atomistic simulations
where depths of penetration of 1 nm have easily been achieved S 3a?
([28]). These two facts caused us recently to examine the ISE V. 2¢3 4
effect in some detail both experimentally17]) and computation-
ally ([19]). Regarding the experiments, both average plast
strains,?p, and strain gradients?=dsp/dc, were estimated
from experimental measures 6{)1 and plastic zone size. As = - =, (5)
summarized in Fig. 2, the average gradient for a given indenta-
tion, x, increased slightly for both small and large spherical tiEq_ (5) deriving from the size scale parameter of E2). Given
radii at shallow depths of penetration less than 100 nm. Howevetiat thea/c ratio was mildly varying by only a factor of two with
deeper penetration depths in the single crystal aluminum produagshtact radii up to about &m, this suggests for shallow depths of
decreasing values of with increasing depths for the sharpespenetration that the surface to volume ratio defined by(Bgis
cones but remained spherical-like for the bluntest ones. This cagarly constant!
be rationalized partially from simple geometric arguments as Nix At the same time, molecular dynamics simulations using em-
and Gao[3] have done for geometrically necessary dislocatiortsedded atom method potentid[49]) were performed on single
emanating from a sharp wedge. The comparison in Fig. 3 suggestgstal nickel. With simple shear boundary conditions, Horstem-
that for the spherical tip the average gradient for a spherical cagyer and Baske§19]) showed a dependence of the yield stress on
tact would be independent of the contact radiosdepth while  the specimen size. It was proposed that dislocation nucleation was
the value ofy would fall off as 1& for a sharp wedge. This a critical phenomena that determined the yield point as a function
reinforced current views that continuum-based gradient plasticity volume-to-surface area. This initially caused some confusion
models are not appropriate to very small plasticity scales. That istween the two research groups until it was clarified as to how
hardnesses at the shallowest depths were accompanied by stvalome-to-surface area was being assessed. This is discussed in a
gradients which were increasing or nearly constant for indentaete added in proof.
Since the surface-to-volume ratio appeared to play a pivotal
1These will be addressed in more detail in the experimental section which followle for shallow contacts, we reviewed contact forces over the

Y .
=3 n=material constant. 2

12
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Fig. 3 Schematic of spherical and sharp wedge contacts showing difference
in strain gradient dependence on contact shape

scale of interest=10 um, as summarized in Tabld 2,3,12,31- energy effect[33]). Regarding surface stress, the work in elasti-
41]). For the present study we believe the first three categorieally deforming surface atoms, this is sufficiently large to trigger
represent forces too small to be significant to an ISE. Clearlurface reconstruction and lattice parameter changes in small
adhesive forces can be important particularly to polymer contagfghereg[34—36). For example, if one considers the surface work
where pull-off forces can be in the N regime. However, for a only associated with the surface stress, this can be converted
number of metal/metal and diamond/metal contacts in Iaboratotwrough the Laplace pressure on a sphere to a change in lattice
air, the pull-off forces were less than/AN representing a force parametex[16]). (See Appendix A. Such observations of lattice
generally less than about three percent of the total. parameter changes by TEM electron diffraction have been found

Consider, next, the level of contact forces associated with s 34-36). Regarding the next scale level of forces and lengths
face energy and surface stress. While the forces in a narrow %5 - R€g 9 gths,

nulus around a surface contact have a limited area of influen (’ere.has been a Iarge eﬁd[$8—40,42,43 in .attempltlng to
surface energies and excess surface stress may act over are4€gibe both nucleation and yield forces associated with the onset
least as large as the extent of the plastic zone around the cont@t@!asticity and the arrest of a displacement excursion.
Consider first surface energy,, which is the work to create new  Finally, the well-documented ISE for sharp-wedge tips driven
surface as might be related to creating cracks in an oxide filfito single and polycrystals and interpreted in terms of length
below the contact or new surface as slip steps emerge around $hales associated with strain gradient plasticity needs little intro-
indenter. In another type of experiment on small wires, finite loadkiction here([2,3]). Such indentation experiments can be de-
are found where creep rates become zero because of the surfarided by

Table 1 Contact Forces: a Hierarchy of Scales

Phenomena Observations Forces/Energy Scales
Jump to contact[3]) STM/AFM van der Waals nM/A
Film dewetting([32]) AFM van der Waals versus nN/nm

surface tension
(Laplace pressuje

Adhesion([16]) Surface forces apparatus van der Waals, uN/nm
AFM/nanoindentation chemical bonding:
JKR/DMT
Creep of small volume Load at zero creep as a function  Surface energyys uN/nm
wires ([33]) of wire diameter—ISE? (work to create a new
boundary
Lattice parameterd(,) TEM observations show,
changeq[34-36) scales as R in spheres
Thin film yielding under \oltage driven surface stress Surface stressrg uN/nm
an electrolyte[37]) affects nanoindentation induced (work to elastically
yielding deform surface atoms
Yield initiation Drumhead effect; Film elasticity, image uN/nm
([38-40Q) oxide film effect in forces, film fracture 1
nanoindentation—ISE? mN
Yield arrest([24,4Q) Displacement excursion Dislocation array uN/nm
in indentation—ISE? stress field |
TEM, SEM Rosettes mN
Small wire torsion([41]) Torque versus wire size or Strain-gradient modified uN/nm
Indentation size effects hardness in sharp-wedge Taylor hardening [
(I1se) ([2,3,12) penetration(ISE) mN um
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Table 2 Details of load (P), displacement (&), contact radius (&), plastic zone radius (c), hardness (H), and surface to volume
(S/V) at the end of yield excursions in ~ (100) Fe-3wt%Si, R;,=70 nm. (Note that only every other data point in Fig. 7 (c) is detailed

here.)

S)Z H 3
P ) a c H Y (V (O-ys)
uN nm nm nm GPa Hioys m - 1x10°° m~2x10" 1
38 8 33.5 224 10.8 30 1.50 6.08
50 10.5 38.2 258 10.9 30.3 1.27 4.49
60 21 54.2 282 6.5 18.1 1.96 2.28
74 24 58.0 313 7.0 19.5 1.65 2.02
94 40 74.8 353 5.35 14.9 1.91 1.21
100 40.5 75.9 364 5.52 15.3 1.79 1.14
114 48 85.7 389 4.93 13.7 1.88 0.91
118 52 91.1 396 453 12.6 2.00 0.80
150 62 104 446 4.43 12.3 1.82 0.62
155 70 114 453 3.79 10.5 2.10 0.51
163 70 114 465 3.98 11.1 1.94 0.52
175 84 132 482 3.19 8.9 2.02 0.39
198 95 146 512 2.95 8.2 2.40 0.31

In {100 Au, R;;=205nm with only every third data point in Fig. 7(a) detailed:
16 6.5 51.6 309 1.99 24.9 1.35 2.81
20 7.6 55.8 345 2.04 25.5 1.14 2.15
21 9.0 60.7 354 1.81 22.6 1.25 1.80
30 12 70.1 423 1.94 24.2 0.97 1.33
48 14 75.8 535 2.66 33.2 0.56 1.15
40 155 79.7 489 2.00 25 0.81 1.04
50 16.5 82.2 546 2.35 29.4 0.623 0.986
44 18 85.9 512 1.90 23.8 0.825 0.918
48 20 90.6 535 1.86 23.2 0.804 .807
47 22 95.0 530 1.66 20.7 0.989 .733
58 25 101 588 1.81 22.6 0.832 .799
62 27 105 608 1.79 22.4 0.759 .647
72 30 111 656 1.86 23.3 0.654 541
70 33 116 646 1.65 20.6 0.749 490
71 34 118 651 1.62 20.2 0.757 AT2
88 40 128 725 1.71 21.4 0.645 .408
92 47 139 741 1.52 19 0.712 .348
98 52 146 765 1.46 18.2 0.714 .307
H 5 tals. Justification in terms of geometrically necessary dislocations
- 1+ 5 (6) gave strains as/c and average gradientg, asé/c?. Tip radii of
0

500, 1000, 5000, and 20,000 nm were used for(fte®) Al, 85,
whereH, is the hardness in the absence of strain gradieiftés 360, 1800, and 5000 nm for t§&00) W and single tips of 70 nm

a length scale parameter, adds the depth of penetration. We and 205 nm fo100 Fe-3wt%Si and Au, respectively. In one
would like to point out two aspects. First, the form of E@.and instance a 700 nm spherical diamond tip was used for tungsten as
(6) are identical withH,=Aa u/c, and §* =c,b but the interpre- noted. Since the Fe-3wt%Si and Au were not published elsewhere,
tation is different. StemashenK@2] originally only considered these are shown in detail in Table 2. The Fe-3wt%Si tip used to
hardening due to geometrically necessary dislocations while Nibetermine strain gradient was relatively sharp and since it was a

and Gad 3] considered a flow stress given by three-sided Berkovich, an appropriate area function for the transi-
o PO T T A tion from spherical to triangular was utilized to define contact area
or=0ysVt (&) + 5" x40 () and an effective radius of contgcEor further justification of the

with hardening a function of both strain and strain gradient. TH$rain and strain gradients used, we had accomplished a numerical
second point is that both average strain and average strain gradialysis of a very shallow contact into simulated nanocrystalline
ents tend to increase with increasing depth for “sharp tips” at vetyingsten with a yield strength of 4 GPa and a modulus of 400
shallow depths or for larger spherical tips at all depths. See Fig.@Pa. The 500 nm spherical tip at the end of a 90-deg cone was
Since Eq.(7) implies larger flow stresses for deeper depths afriven into the tungsten to a depth of 167 nm. The apprdgt3i)
penetrations with spherical tips, this did not seem to explain thised was an explicit, numerical formulation utilizing the finite
shallow penetration data of Fig. 1. Some corroboration of this difference method for a three-dimensional model based on large
light loads was found by Yasuda et §43] who documented that deformation, elastoplastic contact mechanisms. Moving bound-
the dislocation density of the isotropic plastic zone increased witlies and quasi-static states were handled with an updated La-
increasing depths of penetration. For that reason they rejected ghangian approach. The resulting Mises strain as a function of
model of Stelmashenko et d22] which only emphasized the distance from the tip is shown in Fig. 4 with strains up to about
dislocation density aspect. The above aspects led us to the conQl&. The average strain in the zone was 0.154 whereas if we con-
sion that for very shallow indents that a model based upon suider /¢ it is 0.209 for this 800 nm plastic zone. Further, one can
face,S, to volume relationy, considerations might be promising.curve fit and show the average gradient in the zone to be about
5x10° m~* while 8/c? is 2.6x10° m~ L. The difference between

EXpenmental 2Previously, we had shown for different shapes of indenters thatFgave an
Details of the loads, displacements, plastic zones, contact radiipropriate account of measured plastic zofi@g]). While such a shape change at

; : : : deeper depths will not affect the surface to volume ratio or mean pressure determi-
strains, and strain gradlents are given elsemer@]) for <100> nations, this may bias their relationship with displacement. The reader should be

Al and (100 W. For this study also analyzed in the same wayyare that such variance would cause a small shift in some of the data plots where
were (100 Au [44] and (100 Fe-3wt%Si([17—23) single crys- depth to the one-third power is encountered.
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0.5 (i) surface stress deformation work outside the area of contact

0.45 | WY =m(c?—a?)[ f704]. (11d)
0.4 Note here that the interfacial energies,are the Dupravorks of
0.35 adhesion and thé; are the fraction of areas contributing. Since
03} f,=f,, f,=fg5, one can show to first order for an annulus of
g 0.25 plastic deformation o€~ 2a that these sum to
2 o2 |
w . —
i WD wi~4ma’f 50+ oL);
0.15 | i
0.1 r Y~ 4T £=0.125
0.05 |
. . . . W~ ra?yl. (12)
0. 200 400 600 goo  Further simplifying assumptions were that we could ignore sur-
face stress, that; andf, for fractured oxide or metal/oxide in-
r(nm) terfaces were about a quarter of the contact area fraction under the

indenter,fg, and thatyd~ y2*> y4°X yM°X While one can easily
argue the details, the simple relation we desired here is that to first
order the total surface work is given by the product of the contact
area and metal surface energy.

these and the 1R gradient of 16 m™* indicated in Fig. 3 is due  Next, consider the volume deformation associated with plastic
to the “gage length” basis of ¢” and “ a” used, the former being work, W,. From a continuum standpoiw, can be defined in
preferred. terms of the plastic volumey/, and the tensile yield stress,

for an elastic-perfectly plastic material giving

Fig. 4 Mises strain as a function of distance, r, from indenter
tip for a three-dimensional finite difference numerical analysis

Theoretical

ep
To understand how important the surface to volu/, ratio Wp:Vf oydep. (138)
is, estimates of surface work and the volume work associated with 0
plastic deformation under a contact are in order. Considering fifSkfining an incremental strain as befale,=ds/c and noting
the surface work, a number of contributions including both suthat the hemispherical plastic volume would be (2/8§ one sees
face energy and surface stress are examined. For the general gase
the total work associated with creating either new adéapr new

. S g 2
surface energydy, can be written as W,=V Tysqs=2< G200, (130)

gdA= ydA+ Ady ®) 0 3

{here is a hidden assumption that™is constant but recent ex-
periments[47]) with direct AFM imaging demonstrate a substan-
tial plastic zone prior to the yield excursion. An alternative way of
examining this work is to define an incremental work similar to
that proposed by Cheng and Chedg]. Using Eq.(3) with o

using Maugis’ terminology[16]). He goes on to demonstrate tha
for a surface ofN atoms with an ared=Na, that the surface
work is due to both elastically stretched bonds,, and new
numbers of atoms exposedl, giving

gdA= ya,dN+aoNda, (9) ~oysgives
where y is surface energy and; is the surface stress. With the 27wysci2
definition of straind A/A being both plasticg,, and elasticg, , it dWp=Pdé=——>—dJ (130)

follows that([46])
with ¢; the instantaneous plastic zone size. If we assumecthat

€p €E =c=constant, then
9=y tos (10)
27,2 (9 2
. . . — ys — 2 A
wheree is the total strain. Thus, the total surface wovk,, is Wp= 3 Jo dé= 3 TCoysO. (13d)

made up of new area associated with irreversible plastic work as
well as elastically stretched bonds associated with reversibids seen that13b) and(13d) are identical. Further corroboration
work. There are a number of possible contributions to indentatid® taken from the dislocation theory by assuming that concentric
surface work as follows: loops of length from near zero (c/2 on averagemove down

. . ) ) . glide cylinders to produce work under a shear stregs, This

(i) creating new surface associated with straining materig}eg

outside the contact. This could involve oxide fractuyg;, s

oxide/metal interface fracturey!" °*, and/or slip step Wo=. - - rbmc - oc :7-,027-y55_ (139)
emergence in the metal itseh‘/g‘: bb force per leit Ielngthhdistantc:ie
. number x average loop length move:
Wi= (2 — @) f 1y 2%+ F W™+ f39; of loops ge foop eng
WT—OXe M 20X m (112) Taking 7ys~ (2/3)oys makes (18)=(13d)=(13e). Still sincec
YsT¥s TV <c but only slightly and the displacement excursions have been

shown to be about half the total displaceméuit0]), it follows
that a good estimate of the plastic work is

(i) creating surface by fracture of oxidg2*, or the metal/

oxide interfacem—ox, giving
W;:7Ta2[f4‘ygx+ faw™ % wh %= —)}s'”+ ,ygx_ ,}}snox. Wp:CZTysaexc- (14)

(1) Using the total displacement with Eqd.2) and(14), the surface

(i) formation of adhesion between the diamond indenter—tﬁ? volume work ratio is given by

and the oxide surface film: W, 27y

WE = maZ{ fan O, WA=+ 290 (110) Wo

a2

< (15)

Ty55
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Fig. 5 Ratio of surface to volume works as a function of indentation depth
into (100) Al and (100) Fe-3wt%Si single crystals

What this illustrates is that if tha/c ratio is nearly constant at 6 10

shallow penetration, then the portion of surface work resistin _-!I =_L | 3

penetration rapidly decreases with increasing depth of penetrati—~ 5 F | B u n | B 19

asy, andrys are constant. Back at E¢f) it was suggested that <= . w lg g

for relatively shallow depths of penetration th&V may be TE “r 213405 L

nearly constant. We next examine this and the surface work ar¢ = 4 | - Feawnsi 47 o

ment as to how this gives rise to an indentation size effect. 2 . 188E:-05 :E:

L2t 18 =
o

Results and Discussion S,| om-Es-5-BEEER -GEEE -m- m ], %
First, bothW andW, were determined from Eq&l2) and(14) . . . . 4 L

using either calculated values ofand a as for Fe-3wt%Si or 20 40 60 80 100

AFM imaged values for aluminum crystals. Values for shear yiel

stress were 180 MPa for Fe-3wt%Si and 30 MPa for aluminunt@ 8 (nm)

These data as shown in Fig. 5 illustrate two points. First, for vel

shallow penetrations the surface work can be a significant portis 8 (nm) (Au)

of the total work. While a surface work contribution of 10% may 0 10 20 30 40 50 60

not seem significant we believe the values in Fig. 5 to be ¢ 4, . . . . . 5

underestimate of the true ratios. After these calculations we o

made it was suggested that the surface area could easily be lai= 9 } -%W@mm 0 00 50 BO 15 =

than thewra? used if the vertical surface steps associated with bo = <

oxide fracture and slip band emergence were used, e.g., pile 'TE 81 o <100-Al 14 £

Consider just a native oxide fracture of 3 nm, and approximate = - | 1.26E+05 | . ;—-:

half of the dislocation loops emerging at the free surface to fra = O  <100> Au <

ture oxide. One can show that the surface steps as long trai®®2 6 F ---890E+04 {22

through the plastic zone could produce a new area about thi 3 5| @ hd & .' ] g’

times larger thanra®. Second, the solid curves are Efj5) with = L ‘l

c/a a single value of three for both materials. Going back to Ec 4 2 1 A L L L = 0

(5) then this does strongly imply that if the size scale paramete (] 50 100 150 200 250 300 350 400

were relatively unchanged, that the surface to volume ratios wot (b)
also be constant and near to each other. From data of previcuo
([17.23,44) and present investigation§/V values were calcu- Fig. 6 Surface-to-volume ratio, defined by projected contact
lated and are shown as a function of depth in Fig. 6. Here it 5 ga to plastic volume, as afunct’ion ofinderslltagioé depth for (a)
remarkable to see how constant ﬂ?_{ée/ values are up to depths of<1oo) W and (100) Fe-3wt%Si; (b) (100) Au and (100) Al single
about 200 nm(note the scale difference for aluminuniThe crystals. Solid and dashed curves represent the mean S/ V val-
slightly greater scatter for Al and W can be partially attributed tges for each material. Note the different scales for the two ma-
using four different tip radii in each case. As to the aver&8)¢ terials in (b).

& (nm) (Al)
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Fig. 7 Fit of the proposed model (Eq. (19)) for four (100) oriented single crys-

tals. Single tips of 205 nm and 70 nm radi
multiple spherical tips with radii noted used

values, these tended to be in tfe-2)x 10° m~* regime for all
four materials, the ranking of which we consider later.

i used in (a) and (c), respectively;
in (b) and (d)

model fits the data both in terms of the ISE but also appropriately
ranking the tip radius effect. It should be mentioned here #hat

With S/V~ constant for a given material at shallow depths, itvas taken as the yield stress for Au, Al, and Fe-3 wt%Si but was

was straightforward to arrive at an ISE. DefiniBv=3a?/2c?,
’

it is seen that
£

For plastic contacts of a spherical tip Johnd@9] takes a®
~26R which is nearly the geometric value and combining thi
with the mean pressure defines hardness as

P P
- ma® 2@oR’
But we had already demonstrated that the plastic zone could

given by Johnson’s cavity model, EB), so that by eliminating
P, (17) becomes

2/3_ ( 3/2) 2/3a4/3

= (16)

7

U'fCZ
T 38R’

It is seen withS/V constant, Eq(16) anda®~ 2R can be used to
eliminatec? in Eq. (18) giving

(18)

O'f 1
HN(?'Z?,'W,- (19)
)

H/ oy is shown versusdR) Y for all four materials in Fig. 7. With
the average values @V from Fig. 6, it is also seen that the

Journal of Applied Mechanics

taken as the flow stress for W as discussed by Bahr ¢23]. As
seen from Eq(19), (S/V)? (H/oy9)* should collapse all of the
data when shown versussR) "1. Such a master plot in Fig. 8
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Fig. 8 Master plot of Eq. (19) for all materials
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Table 3 Scaling of flow stress, surface energy, and elasticity we needed to defineV(S)g for our spherical indentations. For a
to surface /volume ratio spherical segment indenting a planar surfat@ndS are defined
by geometry, giving

Au Al Fe w
2
e NIMT 1485 980 1950 2800 i [3R- 5]
Cyy, Pax10 0 18.6 10.8 24.2 52.1 [V S5 &2 s e s 20)
o;, Pax 1078 80 60 360 860 = T sz S5 =575 >
(;f /ey 10° 4.3 5.6 14.9 16.5 Sl 27R5 2 6R 2
‘Tf/')’SCl%l m f 02839 13‘2‘6 i7§’8 30173 where for Baskes and Horstemewy is in terms of the indenter
SIV, m™ix10°° : : : : displaced volume. For comparison, we report yield strength as
N , estimated from hardnesso{s~H/3) normalized on Young's
Data from Hirth and Loethe, Ref49). modulusE. From Eq.(19), this combined with(20) gives
0’85 1
) o ) H= L v 3 (219)
does this but it is seen that a break in the curve appearsRtci =~ 6 —| R
about 3x10" ¥ m? for the aluminum data which involved the v/, Sl,

deeper penetrations. For the 1000 nm tip radius this represents a
penetration depth of 300 nm, just about where the surface to vblere, we distinguish the bulk yield strengtlﬂys, from the yield
ume ratio ceases to be constant in Fig. 6. It appears then thait@ngtho,, that would be obtained fromd/3, thereby involving
different mechanism for the ISE may take place at deeper penetifae ISE. TakingH/3 asos and normalizing on modulus gives

tion depths where the surface work contribution is minimal. 0

One final discussion point is the apparent ranking of average Oys_ _ 9ys 1 (210)
S/V ratios in Fig. 6. One way is through the physical properties of E S\*? V]
the materials as given in Table[89]. Here it is seen that the two 3E v . 6R s .

lowest surface energy metals have the low&3t ratios which
seems counterintuitive. On the other hand, the ratio of flow streNgte for a given material thai-OS/E is constant andS/V]g is

to the elastic stiffness constaut,;, does seem to rank order theapproximately constant at shallow deptRig. 6). The result for a

S/V values. In addition the elastic strain energy density clearbonstant tip shape is thatrys/E should be proportional to
scales W|thof/E so that the greater stored elastic energy abo[i//S]~ %23 whereas Horstemeyer and Baskes originally reported
indents into the higher yield strength materials may be playing @m exponent of-0.38. This is further remarkable since in reex-
additional role in requiring an increased surface-to-volume ratiamining data left out of the original analysis, those data shown
If that is the case then dimensional analysis would imply thaiong with a new least-squares fit give a slope equat®33 in

o2l ysC1; should scale withS/V as these both have Th units. near perfect agreement with thel/3 slope predicted b§21b). As
Comparing the last two rows of Table 3 shows this to be the caiseseen in Fig. 9, there is now a reasonable qualitative agreement
on a semi-log basis. between the two sets of data.

Note added in proof Sometime after this paper was 95 per-
cent complete our respective research groups contacted each o
and found that our surface to volume concepts didn’t even fit ummary and Conclusions
the same page. It became readily apparent that we had utilized twérom examination of average strains and strain gradients as a
different definitions of volume whereil'z represented the vol- function of indentation depth, this reinforces previous views that
ume displaced by the indenter wher&gsrepresented the plastic gradient plasticity models do not apply at very shallow depths. An
volume involved in volume work. To properly compare our datalternative model for depths up to several hundred nanometers is

-1
10" ey
Oys ,
® U EM E
r ==power law [17] 7
- W EAM([17) 1
[ O [35] g
& [47] o |
[ o [46] Ap
10°
10" 10° 10® 107 10° 10° 107

(ViS), ,m

Fig. 9 Incorporation of the Baskes and Horstemeyer definition of volume to
surface ratio, (V/S)g, for comparison of atomistic simulations to the present
data: solid line is a power-law fit with —0.38 slope similar to Eq. (21b)
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1 Introduction that correspond to a mesa, or a surface depreggion Similar

Until ten years ago, growth modes of thin films have bee%teé)iﬁ(()?gég ?e)s(s:ioonnsstltftcj)t? t;i;ed?sle?;ﬁgawzfng \gglc? ?rlltzl;z;fcas;::r: ener-

characterized solely on the basis of thermodynamic consid rd » EXP d. In th pf B he i .

ations. Consequently, two or three-dimensional growth was les are presented. In the case of opposite steps, the interaction
’ ' energy includes a logarithmic dependence unlike the ones previ-

o Sl 1 e et et of e el rpored sl oo ) and At o) O

energy of the substrate, and the interfacial free energy between %ﬁr%uined(no external stress or lattice misfit streb®mo-epitaxial
growing film and the substrate. We now know that such an a P

8 - . ims. The results are compared with lattice solutions and embed-
ﬁgﬁ?:é?:lﬁ[i?) inaccuratéor details and references, please S€ed atom model(EAM) simulations previously developed by

] . Kouris et al.[1,9].
Currently, it is well understood that during the growth of crystal™ - = (- c el oo e steps is reconsidered in the first part
surfaces, three-dimensional structures can develop due to the eé

. . ) ; She discussion that follows. After a brief reference to the well-
tic interaction of surface defects. These defect interactions det irt'own point source model, Chapter 2 describes the Airy stress

mrlcr)]v‘\s/tr:hrﬁ olélgi?grs hocII ogrOV\{.tEe pggfassesfovirdwﬁgzr;fggpégl atr Legnction of two interacting steps. In Chapter 3, the interaction
9 P gy. Y y y P nergy between steps is calculated and compared with the March-

tion and have longer range than the indirect electronic interactio . .
(Stonehani2)). erko and Parshif3] model. The last two chapters of the article

The geometric discontinuity at a surface stgjg. 1) is respon- include results for the elastic field and interaction energy, as well

. . O i as some relevant conclusions.
sible for a discontinuity of the surface stress, resulting in a force

couple with a magnitude proportional to the surface stress. March-

enko and Parshif], in their continuum model of a surface step,

proposed an equivalency between the couple mentioned abovéSubstrates with orientations slightly off the crystallographic plane.
and two force dipolegone with and another without moment

acting along the line of the stefFig. 1). The ensuing elastic

analysis for an isotropic substrate predicted that the interacti M
energy between two identical steps is inversely proportional to ti D)
square of the separation distance. Other relevant studies inclt Q -
the work of Stewart et al4] and Duport et al[5].

In a recent paper, Kukta and Bhattacha[ga determined the (a)

elastic field of a step up to second order. Their model demo
strated that second-order fields are necessary for obtaining ac
rate elastic fields and cannot be described simply by point sourc M
on a half-plane. V)
In the present study, we determine the elastic field of interactir ] % N / %
&
Xq

steps. Airy stress functions are derived for the cases of oppos
and similar steps. Opposite steps are illustrated in Fi¢gs. 19

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, March
15, 2001; final revision, December 15, 2001. Editor: L. T. Wheeler. Discussion on tl (b) ©
paper should be addressed to the Editor, Professor Robert M. McMeeking, Depait-
ment of Mechanical and Environmental Engineering University of California—Santa, i i i
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months afdd- 1 (2) A straight step and the mechanically equivalent flat
final publication of the paper itself in the ASMEYURNAL OF APPLIED MECHAN-  Surface of [3], (b) a concentrated couple M acting at the free
ICS. surface, (c) dipole of strength Q acting at the free surface
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— in the x5-direction resulting in a two-dimensiongblane-strain
(a) l‘_ b _’I‘_ b _’| h X, problem. Their continuum model involves a mechanically equiva-
- , — b 5 lent flat surface with two force dipoles acting along the line of the
step. The first dipole is equivalent to a mom#&htproportional to
the surface stress,

M=fh 1)

X wheref is the surface stre$sindh denotes the height of the step.
The strengthQ of the dipole without a moment is generally un-
known. Details of the resulting elastic field can be found in Kouris
et al.[9].

2.2 A New Continuum Solution. By utilizing the solution
for the elastic field of a single surface step provided by Kukta and
Bhattacharyd 6], one can construct the Airy stress functions for
opposite(Figs. 2a) and 2b)) and similar stepgFig. 2(c)). The
term “mesa” will be used to describe the terrace of finite width
illustrated in Fig. 2a). The geometry of Fig. ®) indicates a sur-
face depression and will be referred to as “pit.”

The Airy stress function for the megEig. 3(@)) is given by

(yamlanaeps L [xl(x2+b> X%, b) ,1< X,

) rs ra Xo+b
«— «— b
l _1 _1 hi *2 +tan?

Xq hox? (1 1
Xz_b o r_f g

2h2wx, [ x2—(x,—b)? . X2—(Xo+ b)z]

(b) pit

w

2 4 4
u ri rs

X1 2 2
X,—b Xo+b 4h“wX] [X,—b
X1 w+tan ! 2—)—tan‘l( 2 ) > 1[ 2,
F_ig. 2 (a Two oppo_site steps forr_ning a mesa, (b) two oppo- X1 X1 m M
site steps forming a pit, (c¢) two similar steps N Xp+b | 4h2wx'f X,—b  Xp+b . a_h o
rs ro m? ri rs 2b

2 Elastic Field of Similar and Opposite Steps

2.1 Preliminary Considerations. Figure 1 illustrates the
cross section of a surface step and the corrgspondlng eI_aspc; model comprehensive discussion on the issue of surface stress can be found in Cam-
proposed by Marchenko and Parsfi&). A straight step is infinite marata[10].

(b) *;

Fig. 3 (a) The geometry and coordinate system of a mesa, (b) the geometry
and coordinate system of a pit.
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(02— f?)(1—-) (h)z 8w?(1—v) (h 5 [ah
e ol

int T d 772,“ d
2w?(1—v) (h\® o h4| ,h ”
“ 2 |3 *Ol@"g) “)

The first term is identical t@3). This expression can be rewritten
in a form that allows for the direct comparison of the terms mul-
tiplying the “strength” w:

A2 Sl 2

Fig. 4 Notation used in the expressions for the displacements

where r; =[x+ (x,—b)?]*2, r,=[x2+(x,+b)?]*? «a is a di- int Tu \d T d m\d
mensionless constant awrdis a “strength” term defined through 8/h oh h* h

Q=wh. The Airy stress functions for the piFig. 3(b)) and the (— In(—) +O(—4In2—). (5)
similar steps are constructed using the same procedure. The cor- m\d d d d

responding expressions are given in the Appendix. Stresses

. . . : A Rhilarl , the interaction energy of two steps forming a pit is
displacements are determined using the Airy stress functions. 'I%?e Y 9y P gap

expressions of the displacements have been obtained with respect (»2—2)(1—p) (h\2 8w%(1—v)[h\® [ah
to the geometry of Fig. 3 and the notation of Fig. 4 and are also Eﬁ{{=—(a) > (a) (T
provided in the Appendix. v H
2w?(1-v) (h\® h* _h
+ a + @'ﬂ E (6)
3 Interaction Energy Between Steps K
The point source model of Marchenko and PargBiryields an ©F in @ condensed form
expression for the interaction energy between steps which is 201 P 201 P
equivalent to EPit— _f (1=v) E il (1=v) E 1 E E
1 1 int T d T d 7\d
-V
Eim=ﬂ—ﬂ[(wh)2t(fh)z]@. 3) 8 (h) fah)) h“l ,h .,
+; a n F + ? n a . ( )

whered is the distance between the two steps. The positive sign in

the quantity[(wh)?=(fh)?] corresponds to similar, while the It is important to realize that if one compares the magnitude of the
negative sign refers to opposite steps. According to this solutidsracketed terms that include the logarithms in E@s.and (7),

steps of similar sigr{Fig. 2(c)) are repelled sinc&;,>0, while one can appreciate the significant contribution of the new term,
opposite stepsFigs. Aa), (b)) may attract or repel each other,not only for the near-field but also for the intermediate range of

depending on the sign of the quantjtjwh)?— (fh)?]. the ratio (/d).
The solution introduced in Chapter 2 yields an interaction en- In the case of similar steps of identical step height, the interac-
ergy for two steps forming a mesa that is complete: tion energy is
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Fig. 5 Displacement u, along the top terrace of a pit, as a function of distance
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Fig. 6 Displacement u, along the bottom terrace of a pit, as a function of distance

similar_
Eint -
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2 h* h share two common terms. The higher order term&@jnhowever,
O(gmza) (8) vyield stresses and displacements that are significant.

o ) ) o In a previous papeft[9]), we had observed that the surface

If the similar steps have different step heights, a logarithmic tergispjacement near a step exhibits loss of symmetry between the

similar to the one above, is introduced to E#). upper and lower terraces. Kukta and Bhattachd6jallustrated

the origin of this phenomenon. We observe a similar behavior in

the case of a mesa or a pit. Figures 5 and 6 illustrate the surface
A simple comparison between the Airy stress functions illuglisplacementi, at the top and bottom of a pit, respectively, as a

trates that Eq(2) and the point source model presented 3 function of the distance from the top of a step. The size of the pit

d

4 Results and Discussion
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Fig. 7 Displacement u, along the bottom terrace of a mesa, as a function of distance
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Fig. 8 Displacement u, along the top terrace of a mesa, as a function of distance

is equal to 40 lattice spaces and the continuum solution expresseavorth noting that the agreement with EAM simulations is re-
in Eqg. (A8) is compared with results from EAM simulations andnarkable.

our discrete lattice model. Values @f=0.0432 Angstroms and When comparing Eq(3) of Marchenko and Parshif8] with
a=1 were used. They correspond to a surface stress he jnteraction energie@h)—(8), one observes that the new term

=3.032 J/M, a step heighh=1.5826 Angstroms, a shear modu-, : P

- ! . } . ' with the logarithmic dependence changes th# Hecay rate. In
lus =160.6 GPa, and a Poisson’s ratie-0.28 for tungsten() i the magnitude of this term is comparable to the ones
was determined by comparing the continuum expressiorufor . 2 . . .
with the lattice solutionf2=0.073 AngstromsT and () are used Proportional to 1d* and cannot be ignored. It is substantial for
in the displacement expressions and are defined in the AppendROth the short and intermediate rangehédl. The interaction en-
Figure 6 illustrates the clear deviation from the Hecay one €rgy of two steps forming a mesa, as a function of mesa size, is
would expect on the basis of the point source modé¢BinSimi- illustrated in Fig. 9. The continuum solution is compared with the
lar behavior is observed in the case of the médgs. 7 and 8 It  lattice and EAM results. A careful atomistic study of Shilkrot and
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Fig. 9 Interaction energy between two steps forming a mesa, as a function of the mesa size
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Fig. 10 Interaction energy as a function of size for similar steps, a mesa and a pit

Srolovitz [11] did not identify the correct dependence but attrib- This solution has significant implications and may require the
uted the variation from the model [18] to terms of order 4. re-examination of some well-established results in the area of thin

Using Egs.(4), (6), and(8), one can plot the interaction energyfilm growth.
as a function of size, for similar steps, a mesa and a pit. Figure 10
illustrates the results; the differences between a mesa and a pit are
quite clear. Similar steps follow the expected?flecay. A com-
parison between the mesa and the pit reveals a sign difference,i
the logarithm. This was observed before in simulations but Coufdgknowledgments
not be explained by the Marchenko and Parshin model. This work was partially supported by the National Science

If one determines the magnitude of the termm@i/d) Foundation’s CMS and DMR Division&Ken Chong and Bruce
+ 8/ (h/d)In(ah/d) appearing in Eqs4)—(7), for realistic values McDonald, Program Directoysunder Grants CMS-9988597 and
of h/d, one finds that it is always negative with an absolute valueMR-0090079.
less than unity(but not much less, for moderate values of the
ratio!). This ensures that the bracketed term in Ef).remains
positive but could be significantly “weakened” when compared to
the corresponding contribution i(6). The implications for the
overall sign of the interaction energy and the correspondirpppendix
repulsion-attraction between steps are significant.

Finally, an observation must be made regarding the interactionAjry Stress Functions. The Airy stress function for the pit
energy of similar stepg-ig. 2(c)). In this case, Eq¢3) and(8) are  (Fig. 4) is given as
identical and predict repulsiofat least in the isotropic case dis-
cussed hereinHowever, if the heights of the steps are different, a
logarithmic term similar to the ones i) and(8) is introduced. hf [XI(XZb) X1(X,+b) [ X
This yields some interesting results when step-bunching issues &te — 7 7 (T)
. e . . ri rs X,—b
involved. We are currently examining this topic and we plan to

discuss it in a future communication. i hwx? (1 . 1
5 Conclusions oh? 5 b7 2 b)? b
. . . L . Xy | XT—(Xo— X7~ (Xo+ Xp—

A closed-form solution for the isotropic elastic field of interact-  + C;) 1 X ( i ) + 2 ( i ) ”tanl( 2 )
ing surface steps has been presented. The interaction energies for ™ I I X1
similar and opposite sign steps reveal the presence of a logarith- 2 U2 _
mic dependence, not previously reported. This termalisays —tan! X2+ b _ 4h ‘;’Xl X2 4b thb |n(r_1)
present in the case of opposite sign steps and can control the sign X1 ™ ry rs I
of the interaction energy. Unlike similar terms discussed in the 5 2
literature, this contribution to the energy does not appear due to 4 4h%wxi [xa—b  Xp+h n a_h) (A1)
broken orientational symmetry or the presence of an external w? r‘l‘ r‘2‘ 2b)’

strain; it does not involve a force monopole. It is simply present

because of the geometric nature of the steps. In the case of similar

steps, the logarithmic term appears when the step heights are Tlo¢ Airy stress function for the similar stefSig. 2(c)) is given
equal. by
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hf[ X1(Xo—b)  X1(X,+b) 71( X1 )
U=—j~— — 2 n
T ri rs X,—b
X1 hox?(1 1
i—1
+tan X2+b ] p [—2+ 7}
2h2wx; [X2—(X,—b)?  X2—(xp+b)? X,—b
-— + tan | ——
u ri rs X1
X,+b\]  4h2wx? (x,—b x,+b] [2abh
+tan * -— —In )
1 T ri rs rqrs
(A2)

Displacements. The upper(+) and lower(—) terrace dis-
placementgFig. 4) for the mesa can be determined using &).
They are

T 1 1 h2Q[ 1 1
%tb bl 2 |02 (x1b)?
(A3)
L 1 1.0 Lt
uz_iT (Xz_b)z (X2+b)2 Xz_b X2+b
h2Q 1 1 X,+b\?
—_— 5+ =|In
o (Xz_b) (X2+b) X2_b
h2Q 1 N 1 | ah\? »
7 | 0—b)2 " (x,+b)2|"\2b (A4)
where
1- f(1—
O= CL)(—V) and T= ( V).
[y iy

The second term ifA3) and the third term inA4) decay as
1/r? from each stegiquadrupole source&sWhile we cannot find

quadrupoles that can be added to the steps to completely remove int

Dropping terms of orderH{/r)? and higher we may write

1
hT( — X2+b) (A9)
ha 1 h2Q 1
U= B T %7b) 7 | (x—b)2
. 1 | X>+b\2  h%Q 1
102" X=b) ~ 7 |(xp—b)2
I WL A10
T 02| 2p) (A10)

For the similar steps of Fig.(@), the displacements are simplified
using similar arguments to yield

T I N ALl
Xo Xo—b Xo+b (AL1)
_ho 1 h2Q 1
AL o vy e "
N 1 2ahb 2 AL2
o+ 0)2|" (xz B) (xz— ) (A12)

Being consistent with neglecting quadrupole sources, we may as-
sumea=1 in all the above expressions.

Force of Interaction. The force of interaction between steps
can be determined by differentiating the interaction energy:

Fo_ PEm AL3

For the mesa, the force becomes
h2
d®

2
l—vfzh_
T d?

1-v

Fineo=—2 +2—0?
TH

these terms, it is impossible to distinguish them from a quadrupole

source. Furthermore, these two terms depend on the reference
half-plane used in the solution while the other terms do not. If we

neglect them, the displacements become

S |
U= 7D x—b

h? h?
(X,—b)?" (X +b)?
1 1 h2Q 1
x2—b+x2+b M (x,—b)?
. 1 | X,+b 2+h2Q 1
402 "\ 3—b) " |(x—b)?
1 | ah)\? h? h2
102" 28] "9\ =02 (ot b)2
In the case of the pit, the displacements are

1 1 hZQ 1 1
b xp1b) " 2 |(xg-b)2 " (xp+b)2

+0

(AS)

U= hﬂ(

(A6)

_hT(

h2T
2
h2Q

1 1
(X,—b)?  (X,+b)?
1 1
(x2=0)2 " (xg+D)?

h2Q 1 1
"7 | (X,—b)2 (Xp+b)?

1
Xo+b

th
e

=+ p—
U, =+

Xp+b)?
n
X2_b

lah2
n%.

(A8)

Journal of Applied Mechanics

1-v _h® [h h3
*24—rw d4 In| = d +0 ? . (A14)
Similarly, for the pit
1-v _h? 1-v _h?
Fmi -2 = f2¥+2Ew2?
1—u h3 h h®
+24—5— P d4 In| 5/+0| . (A15)
and finally for the similar steps
1-v _h? 1-v _h? h3
similar_ 2 2___ —
Fomiar— 4 2 - 2 +2 — F O d4). (A16)
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Nano Electro Mechanics of

S. Peng . .
s § Semiconducting Carbon Nanotube
K. Cho
Mem. ASME The effect of a flattening distortion on the electronic properties of a semiconducting
carbon nanotube is investigated through first-principles calculations. As a function of the
Division of Mechanics and Computation, mechanical deformation, electronic bandgap is reduced leading to a semiconductor-metal
Department of Mechanical Engineering, transition. However, further deformation reopens the bandgap and induces a metal-
Stanford University, Palo Alto, CA 94305 semiconductor transition. The semiconduetmetal transitions take place as a result of
curvature-induced hybridization effects, and this finding can be applied to develop novel
nano electro mechanical systeni®OI: 10.1115/1.1469003
1 Introduction gap of 0.56 eV. We have performed first-principles calculations

. - using the density functional theoflpFT) method, and theoretical
A carbon nanotub¢CNT) is a cylindrical shell of carbon atomsinvestigations are explained in the following to answer several

with a diameter as small as 1 nanometer and a length up to 1'%9portant fundamental questions regarding the relationship be-

100 micrometers. A slngle-wall CNT consists of only carbon ab‘een nanotube flattening and induced electronic property change.
oms, and can essentially be described as a single layer of graphite

sheet(grapheng wrapped into a cylindet[1]). Nanotubes have ) )
recently received an increasing attention due to their unig@e Simulation Method

physical propertiege.g., diverse electronic, chemical, and me- |, grger to obtain a detailed understanding of the nanotube
chanical propertigs([2]), since these unique properties mak@jeformation effect, we have carried out first-principles total en-
them one of the most promising candidates for building blocks @tgy pseudo-potential calculations on flattened SWNT system us-
molecule-scale machines and nanoelectronic deviGess)). Car- 4 density functional theoryDFT) within the local density ap-
bon nanotubes can behave either as semiconductors or metals{igsimation (LDA) ([15)). The Kohn-Sham single-electron
E)[e751)ding on atomic arrangement determined by chirality's vect@fayefunctions are expanded by 18,000 plane waves in a supercell
Recently, it was predicted that the cross section of a carbon
nanotube might be flattened based on the observation of a large

volume reduction in bundles of single-wall nanotub®g/NTS in (@ (b) ———\\
a high-pressure experime(j8]). Experimentally, flattening of a -

nanotube can in principle be induced by an applied force of the tip Dy ( d )
of an atomic force microscopAFM) or a scanning tunneling

microscope(STM) positioned on the nanotube. A cross-section \\___,/

flattening can also take place naturally at the kink site of a carbon

nanotube as a consequence of bend[®gL0]). A recent experi-

ment has shown that mechanical deformation can significanffig. 1 Description of flatness. The degree of flattening is char-
change CNT's electronic behavidfl11]). Referencgd11] shows acterized by the parameter %=(Do—d)/Ds.

that the conductance of a metallic nanotube can be reduced by two

orders of magnitude through AFM tip-induced deformations. In
this work, Dai and co-workers have explained the large conduc-
tance change using $ybridization under the AFM tip. Calcu-

lations based on the extendeddkal approach also indicate that
the bending of an armchair SWNT may affect its conductance
([12]). Furthermore, first-principles calculations show that a bent
semiconducting SWNT exhibits quantum dot behavior through
electron localization at the kink sitéf9,13]), and that flattening

of a (10, O nanotube induces bandgap closifig4]). These ex-

perimental and theoretical findings illustrate an important poten-
tial of applying the electromechanical coupling of nanotubes to
novel nano electro mechanical device applications.

In this paper, we explore the possibility of simulation-based
engineering on how a mechanical deformation on a semiconduct- n = 0.5
ing SWNT leading to a cross-sectional flattening, changes its elec-
tronic structure. Specifically, as a representative semiconducting
nanotube, we focus o8, 0) SWNT, which has an LDA energy

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF @ @
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-

CHANICS. Manuscript received by the ASME Applied Mechanics Division, March

15, 2001; final revision, October 30, 2001. Associate Editor: D. A. Kouris. Discus-

sion on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, n =03 n =035 n =04
Department of Mechanical and Environmental Engineering University of California— '

Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four . . .
months after final publication of the paper itself in the ASMBURNAL oF AppLIED ~ Fig. 2 Flattening of a (8, 0) carbon nanotube with different
MECHANICS. degrees of deformation up to 40% flattening

n=0 n = 0.05 n =01

n =02 n =025
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Fig. 3 Energy gap as a function of the flatness. Region 1
shows a band gap closing corresponding to a semiconductor-

metal transition, and Region 2 shows bandgap reopening lead-
ing to metal-semiconductor transition.

The geometry of a flattened nanotube is described in Fig. 1. The
nanotube cross section is initially circulé@Fig. 1(a)), and the
deformed cross section can be described as two straight(times
and bottom parbsjoined together by two semicirclg&ig. 1(b)).

In order to characterize the flatness, a dimensionless quantity is
defined,n=(Dy—d)/Dg, whereDy is the original diameter of an
undeformed8,0) nanotub&6.3 A), andd is the distance between
the two flattened partgstraight line$ of the cross section. The
atomic structure is then relaxed with a constraint of freezing the
carbon atoms in the flattened parts. Figure 2 shows the atomic
structure of a(8, 0) nanotube unit undergoing up to 40%
deformation.

3 Results

The dependence of the energy gap on the flatness is shown in
Fig. 3. The semiconductor-metal transition can be clearly seen at
7n=0.25. It is interesting to observe that the energy gap shows the
two distinct behaviors as a function of flattening, These two
distinct regions are denoted in Fig. 3 as Region 1 and Region 2. In
Region 1, the energy bandgap is quadratically decreasing from
0.56 eV atp=0 to 0.012 eV aty=0.25. In Region 2, the energy
bandgap is linearly increasing again up to 0.4 e\ &t0.4. As far
as we know, this finding represents the first discovery of a con-
tinuous semiconductor—metal—-semicondu¢®vS) transition as
a function of mechanical deformation in nanostructures. We ex-
pect that this SMS transition can be used to develop a nano electro
mechanical feedback system that can maintain constant mechani-
cal deformation or a bistable switch.

The origin of this band gap change can be seen from the band
structures, shown in Fig. 4. Top panels in Fig. 4 show the band

of 12x 12x 4.29 A3 corresponding to 40Ry cutoff energy. A semi-structures of the nanotube undergoing SM transitigegion 1,
conducting(8, 0) nanotube is placed in the supercell including onand bottom panels correspond to Region 2 of MS transition. In

unit of the (8, 0) nanotube with the tube axis alorzdirection.
The Brillouin zone sampling is approximated by dipoints

Region 1, the band structure shows that the lowest energy in con-
duction band moves down to close the band gap as the tube flat-

along the tube axis, which is shown to be a good approximatiéened from»=0 to »=0.25, while the two degenerate highest
for (8, 0) and (10, O nanotubeg[16,17]). The geometry of each energy states in valence band do not change significantly. In the
flattened nanotube is fully relaxed, while maintaining the flattend®legion 2, the two degenerate highest energy states in valence

part, until the atomic forces become smaller than 0.1 eV/A.

¥
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Fig. 4 Electronic band structures at different degrees of flattening deformation. Negative
energies correspond to valence band state, and positive energies correspond to conduction

band states.
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» zmang | FYacture Nucleation in
_vwuang' | Single-Wall Carbon Nanotubes
o | Under Tension: A Continuum
wenaivs: - ANAIYSIS Incorporating
Interatomic Potentials

H. Gao
Division of Mechanics and Computation, Carbon nanotubes show great promise for applications ranging from nanocomposites,
Department of Mechanical Engineering, nanoelectronic components, nanosensors, to nanoscale mechanical probes. These mate-
Stanford University, rials exhibit very attractive mechanical properties with extraordinarily high stiffness and
Palo Alto, CA 94305 strength, and are of great interest to researchers from both atomistic and continuum
points of view. In this paper, we intend to develop a continuum theory of fracture
K. C Hwang nucleation in single-wallgd carbon .nanotubes by !ncorporating interatomic potentials
‘- V- ’ between carbon atoms into a continuum constitutive model for the nanotube wall. In
Department of Engineering Mechanics, this theory, the fracture nucleation is viewed as a bifurcation instability of a homoge-
~ Tsinghua University, neously deformed nanotube at a critical strain. An eigenvalue problem is set up to deter-
Beijing 100084, P. R. China mine the onset of fracture, with results in good agreement with those from atomistic
studies.[DOI: 10.1115/1.1469002
1 Introduction ported the fracture process to be similar to the unraveling of a

sweater. Based on molecular dynamics simulations using a realis-

Interest in carbon nanotubes continues to grow since their fi% interatomic potential for carbofi17,18), Yakobson et al[19]

discovery([1,2)) and the establishment of new effective memOdStudied fracture of carbon nanotubes under simple tension. They

of producing them(3]). Nanotubes have a single or multiple Iay'established that, before the strain reached a critical level, defor-

ers of atoms in the tube thickness direction. These single-wall fation in the nanotube remained uniform. At this critical strain

multiwall carbon nanotubes display superior mechanical prop%-vel’ which was named thareaking strain([19]), a few carbon

ties. For example, both atomistic simulations and transmissi fAnds broke almost simultaneously, and the resulting “hole” in
electron microscopy and aFomic fofce microscopy experime e nanotube wall became a precdrsor of fracture. The atomic
have shown that the Young's moduli of carbon nanotubes are §iorder propagated rapidly along the circumference of the nano-
the terapascadTPaj ra_nge([4—10]), orders_ of magnitude larger tube, and a largely distorted and unstable neck formed bfdek-
than their macroscopic counterpa(graphlte. The strengths_of ing strain, which represented the critical strain for a nanotube to
carbon nanotubes, defined by the maximum force per unit an ergo nonuniform deformation, depended strongly on the tem-
before failure, are also exceptionally high, on the order of 30 G PRrature. It was approximately 55% at 50K, 50% at 100K, 42% at
in bending([7,10)). Yakobson et alf7] studied buckling instabil- 300k 3494 at 600K. and 25% at 1200K. At later stages’of frac-
ity of carbon na_notubes ir_l compression an_d found that a G'We, ',[he nanotube f}agments were connected by(onéew) un-
long nanotube with 1-nm diameter can sustain a large compresSige|jing monoatomic chain which grew up to hundreds of atoms
strain of 5% prior to buckling. Even larger strain Ievel§ WErg, length before its breakage.
reported for carbon nanotubes under torsipri). Mechanisms — there are virtually no continuum studies of nanotubes because
responsible for these superior mechanical properties of carbppy generally thought that continuum mechanics theories are not
nanotubes at large strains have been identified by atomistic aél?blicable on the atomic or nanometer scale, and one must rely on
quantum studieg[11-14)). The superior material behavior andaiomistic studies. Friesecke and Jarf2® proposed an approach
light mass density of carbon nanotubes are the basis for magypass the atomic information to a continuum theory for a nano-
proposed applications of nanotubes ranging from nanocomposiégg;cture in which one or more dimensions are large relative to
to probe microscopy. o ] atomic scale. Yakobson et dI7] introduced a continuum shell
~ There are, however, very limited studies on the fracture behgypdel for single-wall carbon nanotubes in order to determine the
ior of carbon nanotubes. Lourie and Wagh$] made transmis- young's modulus and effective nanotube thickness by fitting the
sion electron microscopy observations of fracture of single-walnsjon and bending rigidity obtained from molecular dynamics
carbon nanotubes embedded in an epoxy resin under uniaxial tgfulations. The buckling strain and buckling mode of a com-
sion. Yakobson and Small€yl6] conducted atomistic studies of pressed nanotube predicted by the shell model agreed well with
fracture of a zigzag13,0 single-wall carbon nanotube and rethe molecular dynamics simulatiof,21]) and with the experi-
mentally observed pattern§21-23). However, as Yakobson
*To whom correspondence should be addressed. et al.[19] pointed out, the continuum shell model was not capable
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MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- of predicting thebreaking strainof a nanotube under tension, nor
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Department of Mechanical and Environmental Engineering University of California; 17 18_|) A systematic approach is adopted to derive the con-
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MECHANICS. carbon bonds, which leads to a continuum constitutive model for
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carbon nanotubes. We then use this continuum theory to study tl
breaking strain at which the nanotube begins to deform nonuni-
formly, leading rapidly to the formation of a necked zone followed
by the final stage of fracture. Theeaking straindetermined from
molecular dynamics simulations is modeled as the critical strai
of the nanotube in the continuum analysis at the onset of bifurce
tion, i.e., when nonuniform deformation starts.

2 Interatomic Potential for Carbon

Tersoff [17] and Brennef{18] provided an expression of the
bonding energy between atormandj for carbon,

V(ri))=Vg(rij) =B Va(ri), 1)

wherer;; is the distance from atomto atomj, Vg andV, are the
repulsive and attractive pair terms given by

D(® _ . ,
V(1) = e VZSBr =R (), ) Vi V'r)
D(e)s — e
VA(r): ge—\JZ/SB(r—R ))fc(r); (3)

r r
where, for carbon, parameter®(®=6.325eV, S=1.29, B ’ \/ H

=15nm*, R(®=0.1315nm is the unstretched bond length at
equilibrium, and the functiori. is merely a smooth cutoff func-

: - . L Fig. 1 Amultiscale f k t tablish ti th
tion to limit the range of the potential, and is given by 9 muisca e ramework to es7ablish & continuum theory

incorporating the interatomic potential 14

1 r<RW,
1 Tr(r—R(l))”
f(r)={ ={14+c08 —5———- RYV<r<R®@, (4
(1) 2{ i{ R —-RWD @ As shown in Fig. 1, a multiscale approach is used to link the

0 r>R® strain energy density on the continuum level to the interatomic
' potentials on the atomic level. On the continuum level, a small
which is continuous and has a cutoff Bf?=0.2 nm andR(Y  representative cell is taken for each material point such that the
=0.17 nm to include only the first-neighbor shell for carbon. deformation within the cell can be considered uniform. The strain
The parameteB;; in (1) represents a multibody coupling be-energy stored in the representative cell on the continuum level is
tween the bond from atoirto atomj and the local environment of evaluated by the total energy of all atomic bonds within the cell.
atomi, and is given by Let F denote the deformation gradient at a material point on the
1 continuum level. The Lagrangian strain tensor is
Bij=5 (Bij +Bji), (5) 1
E=§(F -F=1), (8)
where
-5 whereF" is the transpose df and| is the second-order identity
, (6) tensor. The unstretched bond length between atbrasd | at
equilibrium is denoted byi(jo) , While the bond orientation is char-
5=0.80469,r;, is the distance between atomsndk, f. is the acterized by its unit vectan(® in the undeformed configuration.
cutoff function in(4), ;. is the angle between bonds j andi  The stretched bond length after the deformation is imposed

Bij=|1+ E G(Oij) fe(rin)

K(#i.j)

—k, and the functiorG is given by becomes
2 2
Co Co ri=riYy1+2n©®.g.n©, (9)
G(O)= 14— - 7 1 1]
(6)=2, d2  d2+(1+cosh)?|’ "

The energy stored in the bond ¥4r;;), whereV is the inter-
and the constant,=0.011304c,=19,d,=2.5. Itis straightfor- atomic potential for carbon given in Eql). Following the
ward to show thaB; is very close to unityone. For §=2/3x, as Cauchy-Born rule([25,26)), the total strain energy stored in the

in the equilibrium structure of a carbon nanotube, the coefficiefpresentative cell if;;V(r;;), where the summation is over all
B, =0.95. atomic bonds within the cell. Therefore, the strain energy density
! at this material point on the continuum level is

3 A Continuum Theory Incorporating the Interatomic Z<J V(rij)
Potentials W=—q—, (10)

Gao and Kleirf24] proposed a systematic approach to incorpo- ) ‘ )
rate a cohesive force law into the constitutive model of solids. Aihere() is the volume of the representative cell.
empirical cohesive force law was used to represent the interacFor a carbon nanotube, the interatomic potential in Egac-
tions between material points in the solid. The constitutive lagounts for the interaction among atoms only within the first-
was then derived by homogenizing all cohesive bonds at eaepighbor shell. Therefore, the unstretched bond length at equilib-
material point. This approach is adopted in the present studyriom is ri(jp):R(e)ZO.lSlS nm. The summation over all bonds in
incorporate the interatomic potential into a continuum model fdEqg. (10) can be effectively evaluated by an integration over the

carbon. bond orientations,
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where the incremental modulus for a single-wall carbon nanotube
is given by

! | W 2”( V'(r) V'(r)

= = _ (€)*1(0)(0) 1(0) 1(0)
/——E—\ C JEJE . 7 —rr)R n'“n®n®n"'D(p)de.

(16)

i
w The interatomic potential of carbon, given in E@), has been

//B°"d Orientation directly incorporated into the above constitutive relations. The
J stresses and incremental moduli, however, are given in terms of
e, / integration with respect to the spatial orientations of the atomic
y bonds. In order to further simplify the analysis, we make the fol-
, lowing approximations:

/ ¢ e (i) The coefficientB;; in the interatomic potential for carbon, Eq.
€ (1), represents a many-body coupling effect. As discussed in Sec-
tion 2, the coefficienB;; is very close to unityone for carbon
nanotubes, and the difference betwdinand one is always less
than 5%. Since we are interested in tireaking strainof carbon
nanotubes rather than the atomic arrangement of carbon bonds, we
may approximates;; by one.
(i) Rigorously speaking, the graphite structure of a carbon nano-
‘ tube does not exactly satisfy the Cauchy-Born rule because the
\e__/ hexagonal graphite structure lacks the centrosymmetry required
! for a homogeneous deformation gradient. This means that a “ho-
mogenously deformed” nanotube is actually inhomogeneous on

Fig.2 A schematic diagram to show the coordinate system on the unit cell level. We are interested in a bifurcation analysis of
the nanotube surface; e ,and e are unit vectors in the circum- fracture nucleation in the spirit of Euler’s classical analysis of
ferential and axial directions, respectively, and ¢ is the angle  beam buckling. For this purpose, we approximate the hexagonal
between the bond and the circumferential direction graphite wall of a nanotube by a comparison medium having ran-

domized bond structure but identical mass density and Young’s
modulus as the graphite. That is, we smear the bond deBsity

into an isotropic functionD(¢)=3/27D= 13 71R®”. This
2m density function has the same number of atomic bonds per unit
W= o V(r)D(¢)dé, (1) area as the graphite structure and satisfies the centrosymmetry
required for the Cauchy-Born rule.
where, as shown in Fig. 25 is the angle between the bond and Based on the above approximations, the second Piola-Kirchhoff
the circumferential directior, within the nanotube surface; thestressT in Eq. (14) and the incremental moduluS in Eq. (16)
bond orientatiom(® = cos¢e,+ sin ¢e, ande, is the unit vector can then be simplified as

in the axial direction; the stretched bond length 3D , (27V/ (1)
=R®1+2n@.E-n@: andD(¢) is the bond density function T= 2—0 (e) f Tn““n“”dd;, (17)
m 0

such thatD(¢)d¢ is the number of bonds per unit area of the
undeformed nanotube surface with bond orientation betwgen o f gt ,
and¢+d¢. For a single-wall carbon nanotube, the bond density C= &Rm)“f (V (r), v (U) nOn©@nOnOdg. (18)
function D takes the form 2w 0 r2 r3 ’

3
D20021 (P bm), (12) 4 The Bifurcation Analysis of a Carbon Nanotube
" Under Tension

We investigate a single-wall carbon nanotube subjected to
mple tension along the axial directiah The nanotube under-
oes uniform and axisymmetric deformation prior to bifurcation,
nd the only nonzero component of the second Piola-Kirchhoff
Wess isTz7 . At the onset of bifurcation, the deformation starts to
become nonuniform.
2 1 Let (R,0,Z) denote the cylindrical coordinate in the initial,
D0=% W (13)  undeformed cqnfiguration, a_tnep(,e,,,ez) the corresponding unit
vectors. The displacement is
whereR(®=0.1315 nm is the unstretched bond length for carbon.
The secondsymmetrig Piola-Kirchhoff stressT is the work

conjugate of the Lagrangian straify and is obtained from the The deformation gradierf is
strain energy densityV as

where § is the Dirac delta functiong,, ¢,, and ¢5 are discrete
angles of carbon bonds of the hexagonal lattice within the nang
tube surface, and the constdpy is the number of carbon bonds
in the ¢,, direction per unit area of the undeformed nanotub
surface. Since a carbon nanotube has a hexagonal lattice struc
it can be shown that

U=Ugert+ U pt+Uze,. (29)

W sy F=1+UV, (20)
= (}_: i)R(e)an)n(O)D((ﬁ)ddL (14) WwhereV=exd/dR+€y/Rdl90+e,3/JZ is the gradient operator.
JE 0 r The Lagrangian strairE, second Piola-Kirchhoff stres§, and

) . ) o incremental moduliC are obtained in terms df from Egs.(8),
Its increment,T, is related to the increment of straili, via the (17) and(18), respectively.

incremental modulug, The equilibrium equation is

T=C:E, (15) (F-T)-V=0. (21)
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The traction-free conditions on the inner and outer surfaces of there
nanotube are

c 1&UR U, : _UR+1aUB : 14U,
F-T-&=0. (22) R"R99 R’ '“ R Ra9' 2 R ag’
Integration of equilibrium Eq(21) over the tube thickness, in . ) )

conjunction with boundary conditio22), gives the governing . g . U, _ U

equations for displacementsz, U,, andU, Fre=—77 Fe=—7 . Fuz=77- (28)

= F T o4 F 0, The nanotube is subjected to an axial displacement and no-

R (99( RaTas) ™ ba ' ab az( Ralaz) = shear traction at the two ends. Therefore, at the onset of bifurca-
tion, the boundary conditions for the bifurcation solution are

1

R FRaTa|9+

= ae(Fea a) T 75 (FpaTaz) =0, (23) U,=tg=t,=0 at Z=0 and Z=L, (29)
whereL is the length of the nanotubég andt, are the shear
— (FpuTwo)+ == (anTaz)=0, traction increments in the radial and circumferential directions,
R0 0z respectively. It can be shown that the above boundary condition
whereR is the nanotube radius; the summation dois overgand ~¢an be equivalently written as
Z; andF and T are the average deformation gradient and stress o0 oU
over the nanotube thickness. Jo=__R_TZ0_
. ; o ) ) 7= =0 atZ=0 andZ=L. (30)
At the onset of bifurcation, the deformation is axisymmetric 7y

(Uy=0), and the deformation gradieftis uniform and has non- 114 homogeneous governing E¢87) and (28) and boundary

Zero components ;= 1T1UR/R agd '.:lezd.Uﬁ(]dZ' The or;1ly conditions(30) form an eigenvalue problem with the axial strain
nonzero component of the second Piola-Kirchhoff stiesst the £ o1 equivalently, the deformation gradiefy, as the eigen-

onset of bifurcation isTzz, and from Eq.(17), value. We first study the axisymmetic bifurcation modég

3D 24\ =Ug(Z), U,=0, U,=U,(Z). The governing Eq(27) become
T,p= OR(e)zJ (r )sz #ds, (24) r(2) 9. z2=Uz(2) g g Eq(27)
0 d’Ug 1 du, Ug
(e) =2 s - . 27472 T R CoozzF ogF 2255 CH(?HHFM 7 =0,
wherer =R®FZ, cog ¢+F3,sir? ¢. The vanishing ofT,, in dz dz R

uniaxial tension requires o

d2u, 1 dUg
(Tzz+Crz2F37) az + R CoozzF aanzﬁ =0. (31)

3D 27\ (r
0=T,p= 2#" R(B)ZJ r( ) o2 bdg, (25)
0 Its solution, satisfying the homogeneous boundary conditions

which governs the relation between the nonzero deformatiéd0), has the form
gradientsF,, andF ;. Similarly, the incremental modulu€ in

. . . - .. . mmZ mmZ
Eq. (18), is uniform at the onset of bifurcation and has nonzero (Ug,Uz)=| Ugo COST' Uzo sin |
components
3Dy 4 [27[V"(r) V'(r) wherem=1,2,3, - is the eigen mode number antd §,,U ) is
Cooon=7- R(® f . cos' pd¢, the eigenvector. The governing E@1) then become two linear,
0

homogeneous algebraic equations fhg, and U,,. In order to
3Dy . [27[V'(r) V(1) have a nontrivial solutiofi.e., bifurcation, the determinant of the
R® J { >—— ——|sin* ¢dp, (26) coefficient matrix for the linear algebraic equations must vanish.
r This yields the critical condition for bifurcation as

Fol F22(Cup0sCz222~ Coyzz) + CoppaT221+ T22(T22
5 maR) 2
+Crz22477) I

Czzz7= >

SDO 4 2|
Coozz=Cozsz==—R® J
0027 0262 2 0

0

Vi(r) V! (r)
r‘2

sir? ¢ cos ¢dd.

. . . . =0. 32
It should be pointed out, however, that the incremé&néndT are (32)

nonuniform and not necessarily asixymmetric at the onset of
furcation, and may have many nonzero componéetg., Ty,
T,z andTgyy).

Making use of the incremental constitutive relatigi¥), the
increments of the governing EqR3) at the onset of bifurcation
take the form

bIL'his, in conjunction withT ,,=0 in Eq. (25), provides two equa-
tions to determiné-,, andF at the onset of bifurcation.

For each mode numben=1,23,--, F,, andF,, at the onset
of bifurcation are obtained numerically. Specificalfy,, is solved
in terms ofFF,, from Eq. (25), and thenF,; is solved from Eg.
(32). The nanotube radius and length are fixedRat0.5 nm and

1 . 1 . IF Rz L=5nm in the present study, consistent with Yakobson et al.’s
—ﬁcengagFM—§C0022F00F22F22+T27=0, [19] molecular dynamics studies. The numerical solution has
. shown that the first bifurcation moden& 1) gives the smallest
1 F2 IF g IF 2z F,; for axisymmetric bifurcation, Kz,) itica= 1.43. The corre-
Cﬁf/«‘iﬁ 09 59 R CWZZFWFZZ 90 +(Tzz sponding axial strain at the onset of bifurcation is
‘ﬂ.:ZH (BEz2) critica= 52%. (33)

+CoozsF5 0) &Z %+ CoozsF ooF 27— oz ~9% (27 we have also analyzed the nonaxisymmetric bifurcation mode,
1 1 s, IE ngtldR(Z)cosne, LtJ)0=_U9t(hZ)si_nn0, #Jzzgzl(%)_cos{na, v_\ll_lp‘ere
- oz n is the wave number in the circumferential direction. The gov-
R ConzF oz RCWZZFZZ d0 "+ ConF uFzz 7 74 erning Eqs(27) then become three homogeneous ordinary differ-
ential equations with homogeneous boundary condit{80s The
+(Typ+ C F ) 222 ‘9FZZ _ solution of this eigenvalue problem gives the critical axial strain
227 mzziz 7z 0, for nonaxisymmetic bifurcation. The numerical solution has
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shown, however, that the critical strain for nonaxisymmetic bifur-  Fischer, J. E., and Smalley, R. E., 1996, “Crystalline Ropes of Metallic Carbon

; ; ; i~ i : [ Nanotubes,” Science273 pp. 483-487.
cation is always larger than the axisymmetric bifurcation strain N1 Robertson, D. H., Brenner, D. W.. and Mintmire, J. W., 1992, “Energetics of

Eq. (_33)- . . . L Nanoscale Graphitic Tubules,” Phys. Rev. 45, pp. 12592-12595.
Without any parameter fitting, the bifurcation strain in E3@3) [5] Ruoff, R. S., and Lorents, D. C., 1995, “Mechanical and Thermal Properties of
predicted by the continuum theory incorporating the interatomic  Carbon Nanotubes,” Carbo®3, pp. 925-930.

H : ; ; 0, _ [6] Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M., 1996, “Exceptionally
potential agrees very well with thereaking strainof 55% calcu High Young’s Modulus Observed for Individual Carbon Nanotubes,” Nature

lated by molecular dynamics simulations at a low temperature, 50 ( 5ndon, 381, pp. 678-680.

K [19]. This excellent agreement at low temperature is becausgr] vakobson, B. 1., Brabec, C. J., and Bernholc, J., 1996, “Nanomechanics of
the interatomic potentiaﬂl?,la incorporated in the continuum Carbon Tubes: Instabilities Beyond Linear Response,” Phys. Rev. L6tpp.
theory has not accounted for the temperature effect, and is appg-S] (Zjilrrlw_vgﬁl?: F., and Wille, L. T., 1997, “Elastic Properties of Single-Walled
cable at low temperature. ln, order fpr Such a continuum theory t Carbon l\ianotubes in Corﬁpress’ion," éolid State Commioi, pp. 555-558.
successfully predict thereaking strainat a finite temperature, an (9] Lu, J. P., 1997, “Elastic Properties of Carbon Nanotubes and Nanoropes,”

interatomic potential including the temperature effexg.,[27]) Phys. Rev. Lett.79, pp. 1297—1300.

needs to be used instead. [10] Wong, E. W., Sheehan, P. E., and Lieber, C. M., 1997, “Nanobeam Mechanics:
Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science,
277, pp. 1971-1975.

5 Summary [11] Nardelli, M. B., Yakobson, B. I., and Bernholc, J., 1998, “Brittle and Ductile

We have proposed a systematic approach to establish a cqn, SEFPr B AR CEREssy PO O L B0, coR s of

tinuum theory mcprporatlng the_ m_teratomlc pqtentlals. SpeCIfI- Strain R’eleaseyin Carbon Nanotﬂbes," Phys. Re\B‘é,pp. R21277—R4280.

cally, we have derived the constitutive law for single-wall carbor13] vakobson, B. 1., 1998, “Mechanical Relaxation and ‘Intramolecular Plasticity

nanotubes from the interatomic potential for carlyadm,18. The in Carbon Nanotubes,” Appl. Phys. Let#Z2, pp. 918-920. N _

proposed continuum theory is applied to study fracture nucleatidi#] Srivastara, D, Menon, M., and Cho, K. J., 1699, “Nanoplastiity of Single-

in a single-wall carbon nanotube under uniaxial tension. The frac-  ,g7s agre o o e ZOMPrEsSIon. T ApRL TS, SRS Pp-

ture nucleation is viewed as a blfur(?e_‘tlon ms?ablllty of a homo_ge[15] Lourie, O., and Wagner, H. D., 1998, “Transmission Electron Microscopy

neously deformed nanotube at a critical strain. The axial strain at Observations of Fracture of Single-Wall Carbon Nanotubes Under Axial Ten-

the onset of bifurcation predicted by this continuum theory incor- _sion,” Appl. Phys. Lett..73, pp. 3527-3529. ‘

porating the interatomic potential is 52%. Without any parametér®! Zﬁg"é’z%hg . krﬁngcisr;g”sg' §é 5:313%97, Fullerene Nanotubes: C-1000000

fitting, th|S_ is in excellent agreement _W'th _tmea!('ng strainof (17 Tersoff, J., 1988, “New Empirical Approach for the Structure and Energy of

55% obtained from molecular dynamics simulations for a carbon  covalent Systems,” Phys. Rev. B7, pp. 6991—7000.

nanotube in tensiofl9]. The excellent agreement between thel18] Brenner, D. W., 1990, “Empirical Potential for Hydrocarbons for Use in Simu-

atomistic and continuum studies demonstrates that the proposed 'ating the Chemical Vapor Deposition of Diamond Films,” Phys. RevAB,
pp. 9458-9471.

continuum theory is capable of analyzing the deformation Oflg] Yakobson, B. I., Campbell, M. P., Brabec, C. J., and Bernholc, J., 1997, “High
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Stress Relaxation in Prestressed
Composite Laminates

Viscoelastic deformation caused in symmetric laminated plates by release of fiber pre-
A. P. Suvorov stress and _by uniform thermomechanical Ioad_s is analyzed on the constituent, ply and
T overall laminate scales with the Transformation Field Analysis (TFA) method (G. J.
G. J. Dvorak qur_ak, Proc. R. _Soc. Lond_., 1992, A437, pp.-3327). Fibe( prestress i§ appl_ied in
) -Fellow ASME |nd|\{|dual plles prior to matrix cure an_d released after matrix consqhdaﬂo_n. Linear or
nonlinear viscoelastic constitutive relations are used to evaluate the inelastic deformation
rates in terms of current constituent stress averages. The TFA method regards both ther-
mal and inelastic strains as piecewise uniform eigenstrains acting in superposition with
mechanical loads and fiber prestress release on an elastic laminate. Interactions between
the eigenstrains at the three different size scales are described by certain influence func-
tions derived from micromechanical analysis of the plies and laminates. Applications
describe stress relaxation in two carbon/epoxy laminates after cooling from the curing
temperature and release of optimized fiber prestress, that allows maximum tensile load
application while keeping both interior and free-edge stresses within prescribed strength
limits. Subsequent viscoelastic deformation under constant rate loading, and stress relax-
ation caused by a sustained application of an elevated temperature to a laminate without
prestress are also analyzed. Results are presented in the form of initial failure maps that
identify overall stress states which may or may not initiate a specific damage mode in the

Department of Mechanical Engineering,
Aeronautical

Engineering and Mechanics,
Rensselaer Polytechnic Institute,

Troy, NY 12180-3590

laminate.[DOI: 10.1115/1.1460909

1 Introduction mal deformations in the fiber and matrix constituents and indi-
vidual plies of the laminate as piecewise uniform eigenstrains that

) - . . _are applied in superposition with external loads and fiber prestress
SPONse, Ipcal fields, anq damage resistance of C.Omp(.)s'te Iam|n§ f&ase to an elastic composite structure. Interactions of the eigen-
is a relatively new subject that has been examined in several <

A . i . A Krains at the ply and laminate scales are described by certain
cent publicationd[1-4]). Typically applied to reduce fiber wavi- i, ence functions that depend only on elastic moduli of the con-

ness for improvement of compressive strength, fiber prestress i@y ents, plies and laminates. The procedure used for evaluation
also create large residual stresses that either improve or diminifiress relaxation in the phases and plies is described in Section
damage resistance of laminated composite plates and cylindrigalina|ly, response of two AS4/EPON 828 laminates subjected to
shells. Since the forces required to cause significant prestresfase of optimized fiber prestress and different loading histories
magnitudes are well within the capability of present equipmefy analyzed and the results are presented, in part, in terms of

used in filament winding, fiber placement or pultrusion, it is likelyhanges to the initial failure maps that bracket damage-free lami-
that many composite structures do support potentially detrimenialte stress regions.

residual stress fields. Table 1 shows the force magnitudes needed
to cause 1000 MPa prestress in commonly used filament tows.

Our earlier studies have focused on elastic laminates, howevgr, | . . P .
release of fiber prestress represents a sustained compressive or-V iscoelastic Constitutive Relations
mal stress that may cause viscoelastic deformation in polymer2.1 Linear Viscoelastic Relations. The linear viscoelastic
matrix systems. Such response under various thermomechanigsstitutive equations for phaseof the composite aggregate are
loads has been investigated by several authors in recent yaak&n in the form
([5-10]), together with experimental characterization of time- .
dependent deformation of polymer matrices or plig8—16)). E(t):f J(t—7) d"r(T)dT )
Some of these experimental results and constitutive equations are ' T dr

utilized herein. As expected, only matrix-dominated ply response% is th i . is the elasti
are affected by matrix viscosity, negligible creep rates are of1€r€Js is the creep compliance functiod,(0) is the elastic

served in the fiber direction. compliance. It is convenient to chang(_a the limits of integration in
This paper extends our previous work on fiber prestress to v@ from 0_ andt to 0, andt and rewrite(1) as

coelastic matrix laminates. Constitutive relations describing both t do,(7)

linear and nonlinear viscoelastic response of polymer matrices are &(1)=J, (1) oy (0) + f I(t=7) —

reviewed in Section 2, together with recent material data for the 04

EPON 828 epoxy resin. Section 3 describes the transformatimmitial phase stresses;(0) in (2) are evaluated from the elastic

field analysis method 17-19), which regards inelastic and ther-solution for the composite system under prescribed overall trac-

tion and displacement boundary conditions. Integratiopty

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  parts changes this equation to
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, February L
28, 2001; final revision, October 23, 2001. Associate Editor: M.-J. Pindera. Discus- €(1)=J(0)o (1) + J(t—7) o (7)dT. (3)
sion on the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Depart- +
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-479 . . . . . . .
and will be accepted until four months after final publication of the paper itself in th?ghe phase strain rate is obtained by taking the time derivative of

ASME JOURNAL OF APPLIED MECHANICS. 3),

Analysis of the effect of fiber prestress release on overall r

dr. 2)
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Table 1 Force needed to generate 1000 MPa stress in linear solid under uniaxial tension and exhibits only elastic com-
filaments /tow pressibility. For this material, the axial tensile creep compliance
function is given by

Fiber Diameter, um Filamentgtow Force, (N) Force, (Ibs)
S-glass 14 2000 307.88 69.22 m 1 1 E,
Kevlar 12 1000 113.12 25.43 Jy(t)==—+=—|1—expg — —t )
Carbon AS4 8 12,000 603.19 135.61 Em E, v
Carbon P-100S 10 2000 157.08 35.31

where E,, is the matrix Young's modulusk, is the Young's
modulus of the elastic spring inside the Kelvin element, gpds
the coefficient of viscosity for the Kelvin element.

The lateral creep compliance function, derived in Appendix A,

t
'e,(t):Jr(O)irr(t)+Jr(O)Ur(t)+f J.(t— 7)o, (r)dr. (4) is given by
0.

The inelastic component of the strain can be obtained by subtract- ()= Yo 1+ E.ar exd — Eey ®
ing from (3) the elastic straid,(0)o(t), leading to y qg 7,90 7y
'(t)= f J(t=7) e (7dr. (5) Where
04
Rate of the inelastic straifb) is given in accordance wittd) as at= EmE, qv:E_ EmE, qusan_ Em””_
 EntE, ° 2 6K(En*+E, ' B6K(Ent+E,)
. . t. 9)
é:,n(t)ZJr(O)(Tr(t)+ f Jr(t_T)o'r(T)dT- (6) (
0,

andK is the matrix bulk modulus.
To provide a specific example, we consider a composite with aThe matrix creep compliance for multiaxial state of stress then
linear viscoelastic isotropic matrix which behaves like a standabt@comes

J7 ,ern ,ern 0 0 0
—Jym J7 —J;“ 0 0 0
-Jr =Jr 37 0 0 0
‘]m: / / - m m (10)
0 0 0 23+3y) 0 0
0 0 0 0 237+ Jy'“) 0
0 0 0 0 0 Z{J’X“+J’y“)
I
This form suggests that the Poisson’s ratigt) =J7/Jy', is a 1 —-v —v 0 0 0
time-dependent function. The initial elastic valueuf))= (3K 1 0 0 0
—En)/6K and in the limitt—o, v(«)=qg, defined in (9).
-v —v 1 0 0
2.2 Nonlinear Viscoelastic Relations. We consider a non- V=
linear viscoelastic model that consistsrohonlinear Kelvin ele- 0 0 0 2Al+w) 0 0
ments and an elastic spring connected in series. The elastic com- 0 0 0 0 A1+ v) 0
ponent of the total strain is characterized by the spring Young’s
modulus, and the creep component by material constants of the 0 0 0 0 0 41+v) (13)

Kelvin elements. Thus, the total strain is

If all ag=1, the material is linear viscoelastic, and the form of

B in matrix V implies that the Poisson’s ratio for the current constitu-
e=Mo+é (1) tive model remains constant and equal to that of the elastic matrix
material. All Kelvin elements are assumed to have the same Pois-

. . . . son’s ratio.
whereM is the elastic compliance matrix. For example, the model = thasth Kelvin element we have

suggested by Ellyif16] for nonlinear viscoelastic behavior of

EPON 828 epoxy provides the inelastic strain refein the form 5= asUZ(jflVU— b€ (14)
n n which can be rewritten as
&= &s=> [asogs Wo—be™] (12) d .
s=1 s=1 e b &(ECSebs‘)=asag;* Vo. (15)

where€s is the creep strain afth Kelvin elementa,, ac, b are 1herefore,

material constants determined from experimental datg,is the t
equivalent stressgq,=(3/2s;;s;;)¥? and s;; = oy, — 1/304J;; is 5= ase*bstJ o W aebsdr. (16)
the deviatoric stress tensor. The matvxs given as o °d

460 / Vol. 69, JULY 2002 Transactions of the ASME



For n Kelvin elements connected in series, the total crig@eglas- dependent constitutive relations, such(ag (11), and (17). At
tic) strain is any timet these relations admit the additive decomposition

€()=M,o, (1) + (1) o (1)=L,€(t)+ A (1) (24)

whereL, andM, = Lr’l are the elastic phase stiffness and compli-
. . . . . ) ) . _ance matricesu, and \, are the average phase eigenstrain and
The inelastic strain rate is obtained either by direct d'ﬁerem'at'oélgenstress, referred to as transformation fields. These may in-
of (17) with respect to time, or by substitutir@6) into (12), clude contributions of distinct physical origin, e.g., thermal strain
n i (stresg and different kinds of inelastic strains, such as viscoelastic
én= E a0 Wo— bsase—bslf o Vaebsdr|. and anelastic deformations. More precisé®4) implies that if at
&1 eq € time t, a material point within the phagewere subjected to in-
(18) stantaneous unloading to zero stress, then the remaining strain
Wguld be equal to the local eigenstrain. If the total strains are

Note that in the present models the time-dependent inelas mall, then the local eigenstrains and relaxation stresses can be
strains(5) and(17) are reversible, i.e., after unloading the straing per,imposed as 9

are completely recovered with time. The tests performed by Xy
and Ellyin[13] on EPON 828 polymers support the fact that the Mr:mrg(t)Jrgrn(tH oo MN=Lo)+ o)+ L. (25)

epoxy resin is a viscoelastic material with no plastic permanen ) ) ) .
strains generated during loading process. wherem;, is the vector of linear thermal expansion coefficients,

and |, is the thermal stress vector. The following interrelations
hold:

2.3 Temperature Dependence of Constitutive Relations.

n
t
€= ae b f ooy Voebsdr. (7)
s=1 0

m=-Ml,  €"(t)=—M. %)

The creep compliance matrix 1) and the constitutive relations (26)
(17) are defined at a fixed reference temperatye usually cho- =—Lm &*t)=—L&"1).

sen as a room temperature. However, the temperature dependence ) ) )

of the constitutive relations may not always be neglected. At any timet, the applied overall stress(t) or straine(t), and

In thermorheologically simple materials, the time-temperatut@€ accumulated local transformation fields can be regarded as
principle reflects the effect of a constant temperature change ont#P separate loading agencies that both contribute to the local
time-dependent material properties by a uniform shift in timgtresses in the composite system. This is expressed in the form
scale. Thus, the creep compliance(1n at a constant temperature N N
¢ is obtained from the creep compliance for the reference tem-,. =B (1) + FAll) e(t)=A et)+ D t
peratured, by changing the time scale, (H=Bo(t) 521 shslt) - &(H=Are(t 521 rsis(t)

(27)

t
mﬂo) (19) whereB,, A, are the elastic mechanical stress and strain concen-
T tration factors, and~,, D, are the eigenstress and eigenstrain
where at(6) is a shift factor dependent on temperature. For eoncentration factors. Particularly simple expressions are avail-
nonconstant temperature change the reduced time variable isable for two-phase media. According to Dvoildk’], with phases

Ji(t,0)=J,

troduced as denoted as = «, B,
t o dt’ D,,=(1-A)(L,—Lg) 'L, Dz=—(-A)(L,—Lg L
£(t)= f e—tl) (20) r r B B8 i r B B
odr 6(t)] Froa=(1=B)(M,~Mg) M, (28)
and Frp=—(-B)(M,~My) M.
Ji(t,0)=J3:(&(1),6,). (21) By taking a time derivative of (2] and using interrelations

6) one can obtain a system of equations for evaluation the local

For the nonlinear material considered in Section 2.2 a simil - '
fgsses in the composite system,

change of variables can be performed. For a constant tempera

change#, the inelastic strai17) is obtained from the inelastic N

strain at reference temperatufig by replacingt with t/a+(6) in o, (t)= Brir(t)—z FroLs{msB(t) + €X(1)}. (29)
the exponential functions ifl7) and by multiplying the result by s=1

1/a+(6),

The inelastic strain raté.'(t) is connected to the stress history
. a t o(t) through a constitutive relation given, for example,(By or
én=> —Se‘bS"an oV oebArd (22) (18). Appropriate replacement of variables should be made when-
s=1 @t o ever the mechanical properties are dependent on temperature, in
accordance with21) or (23).

n

The inelastic strain rate then becomes,

3.2 A Symmetric Laminated Plate. We now proceed to in-
corporate the inelastic phase constitutive relations into laminated
plate analysis, and develop a system of equations for incremental

(23) evaluation of the local stresses in the fiber and matrix of each ply

under a prescribed laminate loading history. The local stress fields

3 Transformation Field Analysis of Composite Sys- then serve in evaluation of the deformation histories of the phases,
tems plies, and laminate. For simplicity, we limit our present attention
to symmetric laminates loaded by uniform in-plane tractions and

3.1 A Fibrous Ply. Consider a representative volume eletemperature changes, although analogous TFA procedures can be
ment consisting of many perfectly bonded phasesl,2, .. .N. relatively easily developed in the context of more general lamina-
The RVE is subjected to either uniform tractioo$t), or to dis- tion theories or finite element prograrid9]). The ply and lami-
placement boundary conditions derived from a uniform strain fielthte are then analyzed only in plane stress.
€(t) on its external boundary, and to a temperature histgty. We denote thg3x3) matrices describing the plane stress re-
Response of the phases can be represented by various tismense of individual plies and laminate by boldface Roman capi-

n

-3,

s=1

as

a t
-1 s -1
02 Vo—bse bstiar | oo™y gePsTatd £
ar ©d aT eq
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000 0
100 0 (33)

1
\i\ U=\ 0

0
0
0 0 0 0O
h All other (6X 1) vectors derived from the RVE analysis in Sec-
tion 3.1 and describing ply response are reduced &32n
» Under the in-plane loading of a symmetric laminate, both the
elastic and inelastic strains will be of the same magnitude in each
pair of plies symmetric about the laminate midplane. Also, ther-
2a mal strains induced by a uniform change in temperature will pos-
ses this symmetry. Therefore, the constitutive relations describing
the response of a ply can be written either in the ply or laminate
coordinate system as

€§=Soitpu o=QE+N (34)

L LLL

e

x)

2b

Fig. 1 Geometry of an element of a symmetric laminated plate o B o
€=Soitp  0;=Qig+ N\ (35)

where Q; andSfo1 are the (3 3) plane stress stiffness and

tals, e.g.S, Q, T, R, to distinguish them from thgx6) matrices, Ccompliance matrices of ttigh pair of plies, and;= — Q;p; is the
L, M, D, F describing phase and/or composite response in Sdy eigenstress. Individual terms {84) and(35) are connected by
tions 2 and 3.1. Thé3x 1) vectors are denoted by Greek boldfacdransformations between ply and global coordinate systems,
leters with the ply number subscripbr j. In constrast, except as

A _pT <o _TT
noted, the(6x1) vectors, while also denoted by the Greek bold- Q=RiQRi S=T/ST,
face letters, have a phase designation subscript, for which we use — = 1
the lettersr, s, f, or m. Quantities originally defined in ply coor- Q=TQTi S=RSR (36)

dinates and then transformed into global coordinates will be de-
noted by top bar.

Consider a composite laminate consistingh\opairs of unidi-
rectional plies arranged in a symmetric layup with respect to the
xy-midplane in the global coordinate systéry, z), Fig. 1. As- The transformation matrices are defined as
sume that each ply is a two-phase composite consisting of a vis-

€=Tle o=Rlo

€=Ri& 0;=To;.

coelastic matrix and aligned fibers. Local coordinates ofithe ¢ §& 2cs

pair of plies are denoted azil(,xiz ,Xis); thexil-direction coincides T,= 2 2 —2cs R, :[Ti—l]T

with that of the fiber axis, andyllz. The composite laminate of —cs cs @—g2

total thicknessh is subjected to overall in-plane stresses, defined 37)
in global coordinates as c=cog¢;) s=sin(¢;)

1 1 T and the anglep; is measured counterclockwise from the laminate
HN(t): H{Nx(t)Nv(t)ny(t)} (30) 0-deg directionx to the x|, fiber direction in theith ply, Fig. 1.
Following the transformation&36) of the reduced vectors, the
and temperature historg(t). Note that(30) represents the usual terms entering35) are
in-plane force resultant divided by the total laminate thickness.

‘Moreover, as suggested §24) and (25), certain eigenstrains ?i={€ix Eiy Eixy}T E:{Uix Uiy Uixy}T (38)
pm and eigenstresses, can be generated within each ply, for - N
example, by inelastic deformation and thermal change. Their =1y Myt M= A Nh

(6x1) ply averages are derived from the corresponding phaﬁg
components and the elastic local field averages, using the gengs
alized form([18]) of the Levin’s formula([20])

M M m=a ) +e' )+ ... N=BO+a()+ ... (39)

R .
/u=§_:l B )‘:Z:l AL N (1) wherea,={a,a,a:27 is a (3x1) vector of in-plane linear ther-

"~ "~ mal expansion coefficients of the ply afl= — Q;«; is the ply
where theB, and A, are the (6<6) mechanical concentration thermal stress vector. Also,
factors in(27); M is the number of phases in a ply, usual/ _ - — —
=2. Quantities pertaining to the phasef theith pair of plies are Mi=—SN  N=-Qu. (40)
assigned subscriptand superscript, thusc; is the volume frac-  sjnce no through-the-thickness constraints are imposed on the
tion of phaser in theith pair, andy is the eigenstrain generatedlaminate, there are out-of-plane ply strains caused by the in-plane
in phaser of theith pair of plies. stresses in each ply. These thickness strains can be evaluated for

The summation in(31) is first carried out and the resultingthe transversely isotropic ply of elastic compliaridg as

(6x1) vectors are reduced by deleting rows 3, 4, and 5. In par- i O O :
ticular, the in-plane ply eigenstrains and eigenstresses intithe €3=M3,0+ M0+ 3 (41)
pair of plies are obtained frorf81) in the form

in (25), both thermal and inelastic components are included
the ply transformation fields,

(N R
) €4= My €57 M5
M M

_UTZ NISUEEN —L{TE AT 30 If the laminate is subjected to the in-plane stress components in
M=y CBr e M= Ly G Ay (32) (30, then wh=pt=0 and thee, in each ply can be integrated

through the thickness to find the total='e; component of the
where laminate strain.
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The average ply stresses caused by mechanical M&JS30) phases of each ply of the laminate, and that they enter the phase
and ply transformation fieldg; , \; (32) are evaluated in terms of stress equations in each ply both directly, in the second left-hand

certain stress distribution factors, term of (45 and (46), and indirectly in the third term, which
N describes contribution to phase stresses in the pjused by all
o —HN/h+ 2 Kijxj (42) average ply eigenstrains.
=1

whereH;, K;; are the stress and eigenstress distribution factos, Solution Procedure

respectively, Integration of (46) starts from known initial conditions ait

o N =0. In the case of prestress release, these are evaluated by apply-
H=QQ! Q:Z ciQi  Kjj=46jl—cjH; (43) ing to the laminate the in-plane force resultant caused by prestress
i=1 release in all plies. The average stress applied to the prestressed
wherec; is the volume fraction of théth pair of plies, andD is fibers of theith pair of plies is specified in the local ply coordi-
the overall in-plane stiffness of the laminate. Derivation of thBales as
distribution factors is presented in Appendix B. Note that the first of(0)={(a})L0) 0 0 0 0 Q7. (47)
term in(42) is the ply stress in an elastic laminate, and the second
term represents the contribution caused by both thermal and Release of this prestress is equivalent to applying to the ply-free
elastic strains in all plies to the stresses inittepair of plies; the €dges intersecting the fibers initial compressive stress,
distribution factorK;; includes the self-induced contribution by N
A P — BTl i T
This completes evaluation of the average ply stresses in the N"(0)/h Zﬂ ¢iRi{ci(o11)p(0) O O} (48)
laminate. These stresses are now transformed into local coordi- . ) ) . ) P
nates in each ply. Also, in the last term @) the average ply v_vhereci is the voI_ume_ fraction o_f théth pair of plies,c; is the
eigenstress is replaced by ply eigenstrain, using)4and the fiber volume fraction in that pair of plies. The stresses in the

thermal parts are separated according to,39 matrix and fibers immediately after prestress release are evaluated
N in the ply coordinates as
a=HNh— > K;Q[a;6(t)+€"(1)]. 44)  OR(0)=BUTHNP(0)/h  0}(0)=BiUT;H;N"(0)/h+ crf((O).)
j=1 49

Since ply response can be evaluated only in terms of the constiflre total ply stresses follow by superposition of the stresses
ent responses, the ply stres$é4) are now augmented by zeros incaused by application di”(0) and initial ply tractions that sup-
rows 3, 4, and 5, and included as overall stress components aciiugt fiber prestres&47),
on a representative volume of the composite material of the ply. i i
This in\ﬁ)olves (27) and(29), and providzs the following equaf)y (0)=TiHNP(0)/h+{ci(s1)p(0) O O}T. (50)
tions for phase stresses and their rates, caused inigapair of |n the absence of direct mechanical loading, Hd§)—(50) are
plies by the thermomechanical loading applied to the laminate the initial conditions of the stress relaxation process driven by
M N prestress release. Equatio®9) are readily recognized as the
i iy i dmig RizgT. A TTn leading right-hand term ifd5) att=0, when there are no inelastic
OJ’+321 Frobsles}'+ B’m'; KiQiTje strains. Depending on the details of the fabrication proceddgg,
" can be augmented to reflect a rapid change from the processing
o temperature, by including there the thermal loading terms from
-2 Filimen (29,
s=1 We adopt the method of numerical integration of E@). If
(45) the phase stresses are known up to the current tjrtiee local
fields at timet+ At are found by integration of46), using for
example the Runge-Kutta formula of order two. This involves
evaluation of the integrands {6) or (18) denoted symbolically as
f(t—r,0:(7)).
Moo The algorithm for evaluation of phase stresses can be summa-
> FiLimia(t). rized as follows:
s=1 Step 1: Select the number of time intervals, and compute time
(46) i_ncre_mentAt_:(tn+_1—t1)/n,_wht_aretlzo andt,, 4 defines the
) ) S time interval in which the historieBl(t) and ¢(t) are defined.
The phase inelastic straireg' in the second term are related togtep 2: Find the initial values of the local stress field(0).
local pha§e stress av.er%g.es by the constitutive relainsr Step 3:Fork=1,2, ..., do steps 4, 5, and 6.
(18). The inelastic stralr#j in the third term is a (X 1) vector Step 4: Evaluateb{(tk) from (46). If k=1 the integrals ir(6) and

obtained from(31), as a (6<1) vector in terms of local phase (1g) are zeros, for any othdethey can be found using the trap-
inelastic straing "} in the jth pair of plies, and then reducedezoidal rule,

according to(32). The same reduction procedure needs to be fol-
lowed in evaluating they; in the second term on the right-hand ft
side. Replacing the inelastic strain components by the local phase
stresses, c.f.(5), (6), (17), (18), changes(45) and (46) into a
system of equations for incremental evaluation of local phases FH(te— 11, 00 (t0)) - (51)
stress averages in all plies. .

Note that the mechanical and transformation concentration faeleP 5: Compute trial stresses 8t;; as
tors are connected to material constants only through phase elastic jtr i -
moduli which appear ir{3) or (11), and are assumed to be time- o7 (terd) = 07(t) + Atar(t) (52)
independent. Note also that all eigenstrain contributions, bodimd the stress rate frofd6) at timet, ; using adjusted stresses
thermal and inelastic, originate in individual matrix and fibet52), denoted as

N

=BIUT; HiN/h—_Zl K QT e 6(t)
=

M N
"Tir“‘;l FloLi{elt + Birmijzl KiijTjngn

=BirZ/{Ti

N
j=1

k—1

t
f(t—7,0,(7))d7= ?2 [f(t—t;, o (t))
0, j=1
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Table 2 Properties of EPON 828 matrix (Ellyin [16]) and AS4 carbon fibers (Blackketter and Upadhyaya [23])

Elastic Viscoelastic
En (GPa 2.75 v, 02 b, (1/9 0.015 a; 4
vy 0.4 Gl (GP3 55 b, (1/9 0.0015 a, 2
oy (1078/°C) [23] 48 af (10°%°C) -0.36 b; (1/9 0.00015 az 2
Ef (GPa 235 ab (107%/°C) 18 a; (MPas) 2.1x1071°
E, (GPa 14 a, (MPa?s) 4.7%10°°
Gi, (GPa 28 a; (MPa%s) 5.6-10°
()= (t ,o_i" t _ 53 un_der three loading conditio_ns. Tht_ase in_clude release of the opti-
¢ (0= (te1,07 (tern)) 3 ized fiber prestress found in elastic laminafé@3) followed by a
Step 6: Finally, compute the stresses at timeg 1, relaxation period; subsequent loading of these laminates by pro-
At portional in-plane stresses at a prescribed rate; and sustained ap-
()= 0 (t)+ = {oh(t) + a* (1)) (54) Plication of a uniform thermal change to a laminate without pre-
2 stress. In all cases, fiber prestress is applied prior to and released

after matrix cure and cooling to room temperature.
. . BTN . o The material selected is the AS4/EPON 828 carbon/epoxy sys-
Fhasehlnelastlc stra|r€,(‘|) in e;;:h p(a|r7)of prllles calm be e\llaluated tem, in two symmetric nine-layer laminate layups, a cross-ply
rom the constitutive relation&) or (17). The inelastic ply strain ’ I~ : = ’
€" is obtained from Levin's formula (33. Total in-plane strains ((0/90)2/(_))s_and a quast-isotropic (9/45/45/90/()5' Th_e EPQN
i ' ) h 197> 828 matrix is regarded as a nonlinearly viscoelastic solid con-
in each pair of plies at time can be found from the constitutive t5rming with (12)—(18); its selection was motivated by availabil-
relations (3%) and decomposition of ply eigenstrains (B9 ity of experimentally based constitutive relations and material pa-
— e — i rameterd([16]), Table 2. The fiber is assumed to be elastic.
&(=Soi(t)+ae+e'(t) (55) All results are displayed in the form of initial failure maps
where the ply stress; is given by forming an internal envelope of ply strength branches, plotted in
_ - . laminate biaxial normal stress plane. Procedures used to construct
_pTyyyTrAl i
oi() =RiU "[cio4(t) + cpom(1)] ©6)  the failure maps were described by Dvorak and SuvéidvThe
eigenstrains from the total strains {65) and substituting these hence they indicate the overall stress combinations that cause at
into (B7) provides the overall laminate eigenstrain. Together witi§ast one of the ply stress components to reach the respective ply
the strains caused by the in-plane mechanical tractions, this yiefdgength value, Table :;°, F;" denote axial and transverse ply
the overall laminate strain caused by the combined thermonfrength in tensioit) or compressioric), andFg—the strength in

chanical loads and inelastic deformation in the form shear. Ply strength values u_sed in plotting th_e initial damage en-
velopes are assumed to be independent of time and temperature.

T — . Ply elastic properties are estimated by the Mori-Tanaka method
dt)zSN(t)/h*; ciHi [ 0(t) +¢&"(1)]. (57)  ([21]), Table 3. However, if experimentally measured elastic
_'_ moduli of the AS4/EPON 828 composite were available, a better
The out-of-plane straie} in each pair of plies can be evaluatedit could be obtained with one of the more general methpzi]).
from the ply constitutive relations and known in-plane stress corfvaluation of an estimate that conforms with available experimen-
ponents, as ii41). The overall out-of-plane strain of the laminatetal data for an S-glass/epoxy composite is show[2in
is found as In all laminates considered here, the initial elastic stress states
N are created by certain combinations of tension sthgst, tem-
_ i perature change, and release of optimized fiber prestress that
€37 €37 241 Cies (58)  keeps both the interior and free-edge stressgs=at b within the
ply strength limits, Table 3. The fiber prestress was obtained with
wherec; is the ply volume fraction. Integration of the out-of-planehe procedure described 2], which minimizes an objective
strains through the thickness of the plate appears to be adequatgiétion representing the differences between the free-edge trac-
some distance away from the free edges where strains and streggs@s applied to individual plies by prestress release and the cor-

With the knowledge of local phase stressgsand o',,, the

N

become functions only of thickness coordinate responding ply stress components in the interior of the laminate.
. The resulting prestress magnitudes are listed in Table 4.
5 Applications A simple failure map of a cross-ply AS4/EPON 828 laminate

In the illustrative examples that follow, we examine the effedhat has been cooled from curing temperature but not subjected to
of viscoelastic matrix deformation on redistribution of ply stresse€lease of fiber prestress and any mechanical loads is shown by
the thick black solid lines in Fig. 2. The branch labet§"”,

Table 3 Properties of AS4 /EPON 828 system (elastic moduli

timated by Mori-Tanak thod [21 i
are estimated by Mon-Tanaka metho (21D Table 4 Optimized fiber prestress magnitudes,  (of,)%

Property Property = —
((0/90), /0) 4 carbon/epoxy (0/45/-45/90/0 4 carbon/epoxy
c; [24] 0.61 a, (10°%/°C) 0.054 at N, /h|,_,=836.1 MPa atN, /h|,_o=508.1 MPa
E, (GPa 144.45 a, (10°%/°C) 36.13 andA §=—45°C andA 9= —45°C
E, (GPa 7.0 Fb (MPa) [24] 22.1 @ (b)
Gz (Glza %g;él Fo ('\lﬂfa)l\/l[?] gég 0° Plies: 2100 MPa 0° Plies: 1950 MPa
e . F3(MPa) 55, 90° Plies: 470.8 MPa 90° Plies: 77.9 MPa
Gy3(GPa  2.33 Fi (MPg [23] 2189.9 45° Plies: 62.7 MPa
FS (MPa  800.0 —45° Plies: 62.7 MPa
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Fig. 2 Initial damage envelope for the  ((0/90),/0) carbon/
epoxy viscoelastic laminate before and after 12,000 sec stress
relaxation. Initial fiber prestress is 2100 MPa in the 0-deg plies
and 470.8 MPa in the 90-deg plies. Thermal change of
=—45°C is applied at =0.
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Fig. 4 Initial damage envelope for the  ((0/90),/0), carbon/

epoxy viscoelastic laminate before and after 12,000 sec stress
relaxation. The overall stress is applied at the rate 1 MPa  /sec.
Optimized fiber prestress is 2100 MPa in the 0-deg plies and
470.8 MPa in the 90-deg plies. Thermal change of A@#=—45°Cis
applied at t=0.

o3X" denote laminate stress combinations causing onset of trans-

verse cracking in the 0-deg or 90-deg pliesl® and ¢3%©

of optimized fiber prestress, applied prior and during matrix cure

indicate comblnat|0n§ causing onset of axial ply failure in comf2]). These are drawn in thick gray solid lines and labeled
pression. Additionabry; 45 branches appear in Fig. 3 for a quasi=0 sec, indicating absence of viscoelastic deformation. Rela-
isotropic laminate, these indicate loading conditions causing onsigely high prestress is applied in the 0-deg plies to maximize the

of shear failure in the=45-deg plies.

overall normal stressN,/h. The prestress applied to the

In addition to the individual ply strength branches and the in{{0/90),/0), laminate (Table 4a)) cancels all interlaminar
tial failure envelopes of laminates subjected only to cooling bstresses at the free edges when the laminate is subjected to the
A 9= —45°C from curing temperature, Figs. 2 and 3 show initigxial stressN,/h=2836.1 MPa at time=0. The prestress indi-
failure envelopes of laminates that have been subjected to relegggd for the (0/45¢4 45/90/0) 4 laminate(Table 4b)) minimizes
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X
Fig. 3 |Initial damage envelope for the (O/45/—45/90/0_)s

carbon /epoxy viscoelastic laminate before and after 12,000 sec
stress relaxation. Optimized fiber prestress is 1950 MPa in the
0-deg plies, 77.9 MPa in the 90-deg plies, 62.7 MPa in the 45-deg
plies and 62.7 MPa in the —45-deg plies. Thermal change of
A@=—45°C is applied at t=0.

Journal of Applied Mechanics

interlaminar stresses at free edges when the axial shMeggh
=508.1 MPa is applied at=0

The dashed thick gray lines in Figs. 2 and 3 show positions of
the envelopes after stress relaxation lasting 12,000 sec. Numerical
experiments have shown that this time is sufficient for revealing
the effect of residual stress relaxation in the fiber and matrix on
the final position of the failure envelopes in this material system;
relaxation rates reached insignificant values within this period.
The failure envelopes at 12,000 sec can be used in applications
involving rapid mechanical loading of the prestressed laminate.
Although cancelation/minimization of free-edge stresses by opti-
mized prestress indicated in Table 4 is guaranteed onlyNfdh
=836.1/508.1 MPa applied at time=0, it is believed that this
prestress may be beneficial in reduction of interlaminar stresses at
timet>0 as long as the loading vector stays within the relaxation-
translated damage envelope.

The results suggest that both release of fiber prestress and sub-
sequent stress relaxation cause translations of individual strength
branches, in the overall stress direction that is parallel to the ap-
plied fiber prestress. The translation magnitudes are different for
each branch, since prestress release and stress relaxation cause
dissimilar changes in the ply stress components associated with
specific failure modes. These differences are more pronounced in
laminates made of the very strongly anisotropic plies employed
herein, than in the S-glass/epoxy laminates studied by Dvorak and
Suvorov[1]. These translations are seen to cause exchanges of the
branches forming the internal envelopes, often leading to expan-
sion of the failure envelopes after prestress release. Stress relax-
ation in the selected matrix material affects primarily the trans-
verse and longitudinal shear response of the plies, as normal creep

JULY 2002, Vol. 69 / 465
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Fig. 5 |Initial damage envelope for the (0/45/—45/90/0) ¢
carbon /epoxy viscoelastic laminate before and after 12,000 sec
stress relaxation. Overall stress is applied at the rate 1 MPa  /
sec. Optimized fiber prestress is 1950 MPa in the 0-deg plies,
77.9 MPa in the 90-deg plies, 62.7 MPa in the 45-deg plies and
62.7 MPa in the —45-deg plies. Thermal change of A#=-—45°C
is applied at t=0.

after the 12,000 sec stress relaxation following prestress release,
at a constant ratR=1 MPa/sec. The displayed points indicate
values of the applied stresses at initial ply failure; the failure mode
is indicated by the proximate, parallel initial failure branches.

The positions reached by the newly translated branches can be
better explained by reference to Fig. 6 that shows stress relaxation
in the neat matrix subjected first to constant normal compressive
strain for 12,000 sec, and then to either tensile or compressive
constant strain rate. The chosen strain rate corresponds to the
stress rate of about 1 MPa/sec. The initial compression apparently
promotes faster stress relaxation under subsequent compressive
strain rate, and nearly elastic response under a tensile rate.

This behavior helps in understanding the response of the lami-
nates loaded by constant rate following the initial compression
caused by prestress release, Figs. 4 and 5. In the initial part of a
tensile loading path, the applied overall axial tension reduces the
compressive transverse residual stress left in the 90-deg plies by
prestress release. After that is reduced to zero, the overall tension
generates transverse tension stresses in the 90-deg plies, until they

reach the transverse ply strength. This results in a small translation

of the strength branchrjs " toward higher laminate tensile

stresses at initial failure of these plies. However, the residual and
applied stresses are added under 0-deg compression, promoting
greater relaxation of the transverse stress in the 90-deg plies, and
thus causing a greater translation of the transverse compressive
strength branclrja© of the 90-deg ply. In fact, this branch has
apparently translated so féFig. 4) that it has been partially re-
placed by tharg(lc) branch of the failure envelope. This effect is
even more pronounced in Fig. 5, where the 90-deg transverse

compression branch is no longer a part of the dotted failure enve-

rates are extremely small in the direction of the fibers. While wepe.

do not label the branches forming the prestress and relaxationFigures 7 and 8 show first the initial envelopes of the laminates

translated failure envelopes, their association to specific failunet subjected to any mechanical loads or temperature change.
modes can be inferred by comparing their direction to those in tAdese are drawn in black solid lines. The figures also illustrate the

laminate without prestress.

effect of elevated temperatured=100°C at timet=0 and after

Additional translation of the damage envelopes can also ressitess relaxation @t 12,000 sec on the position of the envelopes.
from matrix stress relaxation under mechanical loading. This s is assumed that the matrix material is thermorheologically
shown in Figs. 4 and 5, where the envelopes are representedsbhyple and a shift factoa;<1 at A9=100°C. Therefore, the
end points of many applied proportional overall stress combiname for thermal stress relaxation can be selected shortertthan

tions, from zero initial valueN,(12,000)=N,(12,000)=0, i.e.,

=12,000 sec without producing noticeable changes in the position

T T T
20} = viscoelastic response
------ elastic response

del\/dt = 0.007*10° 1/sec

-40t
-50f deT /dt = ~0.007*107% 1/sec ., .
—-60F |
-70 1 I 1 ) | L I
0 3000 6000 9000 12000 12250 12500 12750 13000
Time, t [sec]

Fig. 6 Stress relaxation of the EPON 828 matrix material. The matrix is first

subjected to constant axial strain

laxation strain is applied at a rate either 0.007
that at time t=13,000 sec, the magnitude of axial strain is 0.002 or

respectively.
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€71=—0.005. After 12,000 sec of stress re-

%1073 or —0.007*10~%/sec, so
—0.012,
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Fig. 7 Initial damage envelope for the  ((0/90),/0), carbon/
epoxy viscoelastic laminate before and after 12,000 sec stress
relaxation. Thermal change of A #=100°C is applied at t=0.

Table 5 Average ply and fiber stresses in the ((0/90),/0)

laminate

A6 P;+A6 P,+A6 N,/h+P;+A0
t=0 t=0 t=12,000 sec t=12,752 sec

0 ply: oy -8.51 41.56 26.31 1335.9

0 ply: af, —-21.3 83.29 51.1 2179.5

0 ply: o, 10.47 -17.25 —12.52 2.13

90 ply: oy,  —13.09 21.57 15.65 —2.66

90 ply: of, —28.79 46.24 31.39 -11.2

90 ply: o, 10.63 —51.96 —32.89 22.1

Af=—45°C, N,(12000)h=0 MPa, N, /h=1 MPa/sec
Pi=((rf11)'P 0 deg plies: 2100 MPa, 90 deg plies: 470.8 MPa

loads are applied. Finally, the fourth columns presents stresses
reached at the end of the single constant rate loading Igath
=1 MPa/sec.

6 Closure

The theoretical part of the paper outlines the procedure to be
followed in transformation field analysis of overall response and
local ply and phase stress averages in viscoelastic composite lami-
nates subjected to fiber prestress release, thermal and inelastic
strains in the matrix and fiber in each ply, and to uniform thermo-
mechanical loads applied as functions of time. This procedure
takes into account interactions of the elastic, inelastic, and thermal

of the envelopes. At time=0, immediately after the temperaturedeformations of individual phases within all plies of the laminate,
change, the translated envelope is drawn in a gray solid line, a&gd also interactions of the elastic strain and eigenstrain ply aver-
aftert=12,000 sec by a dashed gray line. No fiber prestress wages within the laminate. Two systems of equations, one for the
applied in this case. Note the significant expansion of the failuggne-dependent local stresses in the phases of all plies, and an-
envelope caused by dissimilar branch translations and interior Rfiher one for their rates, are obtained for loading by overall me-
sition exchanges caused by the thermal stresses. Stress relaxaff@thical tractions, release of fiber prestress, and local thermal and

has a relatively small effect in this case.

inelastic eigenstrains. Hierarchical interactions of these effects on

Tables 5 and 6 summarize the magnitudes of important stregg ply and laminate scales are analyzed with certain influence
components reached in the plies and constituents of the two lamiinctions that depend only on the elastic properties of the fiber,
nates at the several stages of loading history applied also in Figgatrix, plies, and laminate.

4 and 5. The first two columns describe thermal and thermal plusResults of several applications to specific loading programs are
residual stresses due to prestress release in elastic systems.di$jflayed by their effect on the position of ply initial failure

third column indicates changes in the second column values afiganches derived from the critical stress criterion. It is shown that
stress relaxation lasting 12,000 sec; no mechanical or ther@coelastic matrix deformation enables a similar response in the

800
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4621007

_800 : i R ; ;
-800 -600 -400 -200 0 200
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400 600 800

Fig. 8 Initial damage envelope for the (0/45/—45/90/0_)s
carbon /epoxy viscoelastic laminate before and after 12,000 sec
stress relaxation. Thermal change of A #=100°C is applied at
t=0.

Journal of Applied Mechanics

matrix-dominated deformation modes of a composite ply. These
include transverse normal and longitudinal shear ply strains, but
mostly excludes longitudinal normal strain associated with fiber-
dominated deformation. The beneficial effect that fiber prestress

Table 6 Average ply and fiber stresses in the (0/45/
—45/90/0) s laminate
A6 Pi+A6 Pi+A6 Ny, /h+P;+A8
t=0 t=0 t=12,000 sec t=12,459 sec
0 ply: oy -7.1 274.7 253.93 1305.3
0 ply: of; -19.0 454.84 418.25 2129.7

0 ply: o, 10.4 9.68 7.31 5.21
0 ply: oy 0.0 0.0 0.0 0.0
45 ply: oy —-10.95 -315.36 -315.8 48.9
45 ply: of, —-25.3 -514.91 —516.85 72.8
45 ply: o, 10.54 -10.32 —6.94 12.8
45 ply: 03, -0.19 28.02 18.58 -11.8
—45ply:0y, —10.95 -315.36 —315.8 48.9
—-45ply:¢f, —25.3 51491 —516.85 72.8
—45 ply: o, 10.54 —-10.32 —6.94 12.8
—45 ply: o4, 0.19 —28.02 —18.58 11.8
90 ply: o4 —-14.81  255.12 274.58 —45.9
90 ply: of; -31.6 417.83 450.58 -81.4
90 ply: o, 10.68  —30.32 —20.99 22.1
90 ply: o1 0.0 0.0 0.0 0.0

A§=—45°C N,(12000)h=0 MPa N, /h=1 MPa/sec
P,=(a},)L 0 deg plies: 1950 MPa, 90 deg plies: 77.9 MPa,
+45 deg plies: 62.7 MPa;-45 deg plies: 62.7 MPa
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may have on the position of initial failure envelope of a composite PE=1+pfD QF=q5+qfD

laminate is thus modified, and usually reduced. However, the re- (AB)
duction is relatively small, even in the present system with a fairly e T e EmE, e Emmy
viscous matrix. The applied prestress was optimized with regard P1= Ent+E, qO_Em+ E, ql_Em+ E,

to allowable stresses supported by the free edges of elastic plies ) ) o )

under simple tension applied to the laminate, as described ivhereD is the time derivative. The operatdP$' andQ" in (A4,)
companion pape[2]). Therefore, the initial failure envelopesremain to be determined. Since the matrix exhibits elastic com-
constructed at=0, immediately after prestress release, define Rfessibility,

laminate stress region which guarantees absgnce of. damage both T(t)=3Ke(t) (A7)

at and away from the free edges. Short-duration cyclic loads may

also be applied within the elastic damage envelopes, providindiereo, e denote mean stress and strain fields, one can define
that ply strength remains constant and viscous effect are limit&@perators

Since viscoelastic deformation promotes stress relaxation, one PK=1 QK=3K (A8)
may speculate that the selected prestress may be admissible even '
within the strength constraints on free edge stressés @t and then use the connection

In the normal stress plane, fiber prestress causes a substantial 3K—E
expansion of the failure envelopes, as well as their translation in y= (A9)
the dominant prestress direction. The expansion appears to be 6K

present only in laminates with strongly anisotropic plies; it wagnich together with(A4) provides
negligible in the S-glass/epoxy systems studied in our earlier pa-

per([1]). Application of fiber prestress can therefore be used as an 3K — Q_E EPE— i £
effective tool for damage prevention in this and others composite Q” PE 2 6K
laminates. PR pE . (A10)
Substituting(A6) into (A10),
Acknowledgment P'=PE=1+p;D Q'=qg+q;D (AL1)
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Office of Naval Research under Grant No. N0001140010090. D?‘SI!OWS (A5) 10 be written as

Bruce LaMattina and Yapa D. S. Rajapakse served as program (g5+ qED)eyy:—(qg+ q1D) oy (A12)
monitors.
sincePE=P”. For the step Ioadrng(t), solution of this equa-
tion gives the lateral creep compliance function A2¢),
. v E~v E
Appendix A _ _ _ ()= “_,2[1 (%1 exp( - qgt”. (AL3)
If the material behaves like a standard linear solid under 0 1o ar
uniaxial tension and exhibits only elastic compressibility, its axig|ipte that according t6A6), q5/qE=E, /7, , hence the exponents
tensile creep compliance function is given by in (A1) and (A13) are identical. v

1 1 E, i
I = =+ — 1—exp( - —t) ) (A1) Appendix B

Em E o Here we derive the stress and eigenstress distribution factors
where E,, is the matrix Young’s modulusk, is the Young's appearing in42) and(43). Displacement continuity at ply inter-
modulus of the elastic spring inside the Kelvin element, apds ~ faces requires that the in-plane strains,(38re equal to the over-
the coefficient of viscosity for the Kelvin element. all straine,

For the constant _streezézX applied to the matrix, the axial and €—e (B1)

lateral strains are given as

N . The laminate constitutive equations are written in a form analo-
ex(D) =03 J5(1) €y (t)=— a3, 0(1) (A2)  gous to(35),

whereJQ‘(t) is the lateral tensile creep compliance function. The e=SNh+u N/h=Qe+\ (B2)
creep Poisson functiom(t) is defined as the negative ratio of

exd) ande, (1), ie., whereQ, S are the(3x3) overall in-plane stiffness and compli-

ance of the laminate&S=Q L. The u andA\ are the overall trans-
J7(1) formation fields; since the mechanical loé&D) and the average
(A3) ply transformation field$31) are independent, these overall fields

v(t)=

v
(1) are caused solely by the ply averaga$).
To find JJ(t), we write the differential equations for the vis- The part of stress averages caused inithepair of plies by the
coelastic solid as mechanical load$30) follows from (35,), (B1), and B2,) as
PEUxx: QEexx I:)Veyy: - Qvfxx (A4) Ei: (5?.: anlN/h (83)
where PE, QF, P¥, Q" are differential operators. FroifA4) it Comparing this with the first term it42) yields
follows that —~ 1
S . H=QQ ™~ (B4)
QP ey =~ QP o (*5) The eigenstress distribution factdr; evaluates the stress in the
Solution of differential equatiorfA5) for a constant stresegx ith pair of plies caused by a uniform eigenstrass —Q; u; that
yields the lateral creep compliance function h2p). is induced by the eigenstrain in th#é pair of plies. The deriva-
For a standard linear solid, the operators Adi() are tion starts by introducing the eigenstrai into the jth ply of a
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The homogenization procedure of Ponte Castimnis used to estimate the effective be-
havior of active composite materials consisting of aligned shape memory alloy (SMA)
fibers embedded in a linear elastic matrix. Results are presented for thermal activation of
the SMA with various applied tractions on the composite. While increasing stiffness of the
matrix phase inhibits the contraction of the SMA, the simulations indicate that the use of
a prestress in the manufacturing of the composite may provide an increase in the response
time of the system without reducing performand@Ol: 10.1115/1.1464873

1 Introduction nonlinear composites have received increased attention in recent
rs. Willis[2] and Talbot and Willig4] extended the Hashin-

one or more constitutive materials having embedded sen;\ié trikr_nan variationa~l principles to include nonIinegr_constitu_tive
and/or actuation. The ability either to sense an internal state, orpnavior. Ponte Castada[5] proposed a new variational prin-
actively control its behavior, makes such materials highly desifiPlé which can be used to obtain general types of bounds and
able. Applications to actuation devices have shown exciting pastimates for the properties of nonlinear composites. The proce-
sibilities, and in particular, shape memory allo§8MAs) have dure makes use of arbitrary bounds and estimates for suitable
opened the door to the possibility of truly biomimetic forms oflasses of linear comparison composites. More recently, a “sec-
locomotion for robots. As such, there has been a great dealasfd order” procedure has been developed by Ponte Cecktf]
research activity surrounding smart materials, ranging from matéat delivers estimates for nonlinear composites at finite contrast
rials development to modeling and active control. exact to second order. In this work, use will be made of the origi-

Sensing is critical to control and in many respects can be usedl “linear comparison composite” variational procedure of Ponte
to great effect in concert with very simple control algorithmsCastaeda.
However, as a system becomes increasingly more complicatedMost of the original one-dimensional macroscopic SMA mod-
less stable or sensing more costly, good mathematical models g@isimulate phase transformation effects without considering gen-
provide a means of minimizing the “effort” required to produce &ra| thermomechanical activation conditioigz—10]), where ei-
desirable output. In the case of SMA-fiber actuators, simplé Cofyer temperature or stress are assumed constant. Often surfaces in
trollers become less and less reliable as hysteresis begins to aggHperature-stress space define the conditions for termination and
mulate and_ degrade pe_rforr_nance. e mmencement of phase transformation, commonly referred to as
seress and sening sues e ony amied it SR pashont 1) becaus of e concepa Sl

: ity between transformation surfaces and plastic yield surfaces. To

vidual wires within the composite, but the cost of such an ap: " . . .
(W]pln‘y the analysis, only complete transformations were consid-

proach is prohibitive, and raises issues of global convergence f ) ) :
control. Furthermore, when displacement or strain in a continu ed. Notable exceptions include the works of IVSh'.n and Pence
2] and Falk[13,14] who used embedded hysteresis models to

is the primary objective of the control system, there is no simp X >l
method of gathering good data for feedback to the controller. fPture the effects of incomplete transformati¢msnor loops.

fact, the majority of the states associated with SMA are not evéti€ to the apparent success of these general mathematical hyster-
observable. Some type of alternative means of counteracting #fS models, many subsequent models addressed incomplete trans-
effects of hysteresis and lack of real-time data is required. V{@rmations by incorporating Duhem-Madelund5-17 and
believe that by estimating effective behavior, homogenizatidsndau-Devonshirgl8] hysteresis models. _
techniques provide a critical link between understanding SMAs asMore recent macroscopic models have begun to appear in the
individual actuators and SMAs as components in smart compdgerature in the past couple of years. Building upon earlier, sim-
ites. In the future, it is our goal to use homogenization as a megplsr models, combined with experimental work on SMA wires, Bo
of hysteresis inversion within a control system. and Lagouda$19,20 derived a sophisticated three-dimensional
The theory of homogenization for linear composites is fairlyjincremental” model capable of capturing both general thermo-
vyell developgd. Appropriate references dealing with linear themechanical loading conditions and minor logp21]). The com-
ries are provided by the review articles of Willi4,2] and the plexity of the model arising from its incremental form makes it
monograph of Christensefi8]. With new variational techniques, more difficult to implement within any type of homogenization-
- based control scheme. Bekker and Bringbr| introduced a mac-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  rngcale kinetic law related to the Duhem-Madelung differential
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . . .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 1O,mO(_:ieIS W_'th deper_wdence on a tranqurmatlc_m phase diagram.
2001; final revision, September 27, 2001. Associate Editor: M.-J. Pindera. Discuss\fhile their model is also capable of simulating the effects of
on the paper should be addressed to the Editor, Prof. Lewis T. Wheeler. Departmgaineral thermomechanical loading conditions and minor loops
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, argg . . L !
and appears to be simple enough to implement within the frame-

will be accepted until four months after final publication of the paper itself in th . oY )
ASME JOURNAL OF APPLIED MECHANICS. work of a control algorithm, it is not clear whether analytical

Smart composites can be loosely defined as composites
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expressions can be generated for the stress energy. This makes it Table 1 SMA material parameters

difficult to implement within the linear comparison composite ho

mogenization procedurg5]). Esme — 70.0 x 10° MPa. | D = 50.0 x 10° M Pa
In the context of composites and structures, there has beenr¢ .. ’ o 3 MP

tively little work in studying the effects of embedded SMA fibers| ¥°" = 0.33 w = 1.750 x 10 a

The paucity of studies involving SMA composites using con (7 = 35 MPa =0.12 1

tinuum mechanics is most probably a direct result of SMA modt Aom — 550% Mom — 4;?0

complexity. Boyd and Lagoudd49,22 used an incremental ver- - —

sion of the Mori-Tanaka method to determine effective properties

of an SMA fiber composite and compared their results to a full

finite element method simulation for a periodic system. Thelfisic siate and then subsequently heated to force transition to aus-

model for the SMA was based upon the earlier work of Tanakgynite with the associated strain recovery. Without the in Eq.

and hypothesized the existence of an isotropic strain-rate yie) ihis strain recovery in the SMA fiber would result in positive

function coupled with linear transformation surfaces. Only iSQsyains in the fibers and negative strains in the surrounding matrix.

thermal stress-activated major loops were considered. On ¥&€order to make the strains in both the fiber and the matrix con-

other hand, the homogenization methods used in this pioneerljgient and more intuitive, the 1 is introduced into the martensite
study are known to be computationally intensive. It is one of oyt € 6(t),7()]—1) as a simple offset. The result for the

primary goals in this work to make use of more efficient homogs\a is then zero strain in pure martensite and negative strain
enization methods to decrease the computational resources in B@fing strain recovery.

culating the effective response of the SMA fiber-activated com-\wnile not fully explored here, the model proposed by Briggs

posites for the purpose of real-time control. and Ostrowsk{26] is entirely capable of simulatinginor loop
Brinson [23] made efforts to include both complex stresspanavior. As with previous work by Bekker and BringdrY] and
temperature states and minor loop behavior for a one-dimensiofalhin and Pencfl2,28, the ability to capture minor loop behav-
SMA wire attached to a polymeric rod, where linear and nonllne_%r is a result of the inclusion of a Duhem-Madelung type hyster-
beam theory were u§ed to cpuple the states of stress and straigdiy model in the functiod[ 6(t), 7«(t)]. A Duhem-Madelung for-
the rod and SMA wire. Similarly, de Blonk and Lagoud@sl] v jation as described in Eq®) and(4) requires two independent

modeled deformation of an elastomeric rod with embedded SMianches, where each branch corresponds to the increasing or de-
fibers distributed as one-dimensional elements. Fiber-matrix 'nt‘ac?‘easing of the dependent variable, martensite.

actions and effective behavior were not considered. While it Is )
possible, at least in principle, to make use of more sophisticated for £>0: 3)
SMA models with more accurate homogenization estimates for _ et et

SMA-actuated composites, our objective here is to develop an L0, (O] = &) + [~ &(1)]

efficient model, yielding a good balance of accuracy versus com- FMLo(t), 7e(t) ] - FML 6(t)), 7e(t))]
plexity, which can be implemented for better control than has been [ 1—FY[ (L), 7a(t)] ]
possible to date. A recent article by Bernardib] describing e

energy functions for SMA's may provide just such an example of for £<0: (4)

an alternate constitutive model to incorporate within the context A A

of this formulation. 5[6<t),re<t)]=f(to—é(ti)[F L [e(ti)’Te(ti)]]
—1-F7[0(t), 7e(t)) ]

2  SMA Constitutive Model The subscripti indicates the value of the appropriate quantity

The SMA constitutive behavior used in this work is a modifiy\/heng(t) last equaled zero or changed sign. The use of switching

: . ; states is a method of enforcing continuity of the constitutive rela-
cation by_ Briggs and _Ostrowsl_ZEB] of the_earller Boyd and La- tions in the two branch model. After each change in the sign of
goudas, isotropic strain rate modgl9]), given by

£(t) the initial conditions in temperature and stress for the evolu-
e=[MA+EMM—MA ] o+ A. (1) tion of & 6(t),7(t)] are determined by the termination states of
»..the previous branch.
Although Boyd and Lagoudas made use of an “incremental veF Two envelope functionsE™, FA, in stress-temperature space

sion of the relation in Eq(1l), as will become evident in the h ¢ h b has bound . thi
discussion to follow, the “total” form is more consistent with the?'® C osen(one for each branghas boundary surfaces within

homogenization scheme to be used in this weeken if it is which ] 0(t/2,7-e$vlt)_] Is confined. The addition of general envelope
possibly less accurateThe first set of terms in this relation rep-functionsF™, F™ is similar in concept to that presented by La-
resents a proportional mixture of the elastic moduli of the twg0udas and BE29]in their unified constitutive model. The choice
phases, wheré is the martensitic volume fraction. To reduce?! function can be made using experimental data or thermody-
implementation complexity, this mixture is replaced with a singlg@mic arguments. In the particular case of the modified model of
linear isotropic termM. The second term is the strain induced 57199 and Ostrowski26], the functions are based upon experi-
by phase transformation, which evolves as a function of the if?€NtS Using a high-temperature 0.015-inch nickel-titanium wire
stantaneous state of temperature and effective steg7]), as oM Dynalloy, Inc.:

determined by FM[G,Te]:tanI‘[aM(GdM— 0)+bM7_e:| (5)
! A _ A/ gdA A
Te The parameters internal ©“ andF* are defined as
The effective stress is defined to be= /30" - o', where ¢’ aM=af=a, CM=cA=cC,
=0— 040, 0= %tr(a-), d'is the second order identity tensor, and M
(in keeping with the notation of Boyd and LagougasandD are pM _a hA=pM
material parameters specified in Table 1. It should be noted that cM» '
the martensitic volume fraction of the SMA varies between zero
and one. This implies that in the purely martensitic state there will M =Mom— %(A"m— M°Mtanh [ £(t;)],
exist a large positive strain. In general applications the SMA fibers
will be embedded within a surrounding matrix in a purely marten- g9 =A°M+ I (AOM—MOMtanh 11— &(t)],
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SMA SMA with 13=14 MPA
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Fig. 1 Longitudinal, isothermal stress cycling for an SMA fiber Fig. 3 Longitudinal, isothermal stress cycling of an SMA fiber
where the initial phase mixture and strain are determined by with a prestress
temperature

focus our analysis on tension and shear primarily because of the
a, C, A°™ M°M are included in Table 1, whei », D were taken Potential applications of such a composite. We foresee the use of
from earlier the work by Lagoudd®2]. For atrained SMA ac- active composites in roles where interaction between the compos-
tuator, proportional loading cycles can form closed paths in stredig and its environment will result in stresses that resist the forma-
strain space as in Fig. 1. Heating and cooling shift the location #¢n of transformation strains. The most obvious analogy can be
the stress-free strain state. Notice also that for very low and vefgund in the muscles of biological systems. . .
high temperature the SMA is linear. These temperature extremedf the SMA fiber has a prestress, the initial tension shifts the
correspond to pure martensite and austenite phases. The pres@fgéibrium configuration to a higher stress state as in Fig. 3,
of an interior loop at 80°C is included simply as a demonstratigihile retaining the two branches corresponding to forward and
of the minor |oop behavior. In F|g 2 we have included Compregeverse transformations. The conflguratlon from which the strain
sive stress in the SMA model. While there is certainly some irfevolves is now one that has a nonzero stress, but maintains the
teresting behavior for this loading condition, we have chosen &psed loop characteristic. Figure 3 is just such an example with
four different isothermal stress cycles and an initial fiber tension
corresponding ta.= 14 MPa.

One can also consider iso-stress thermal activation. Figure 4
demonstrates thermal activation for an SMA wire initially in a
state of pure martensite with longitudinal tension. As the prestress
increases, the subsequent hysteresis loop in temperature-strain
. space shifts to a higher temperature range with an offset in strain.
The size and shape of the hysteresis loop remains consistent be-
tween the different states of prestress, implying that the change in
temperature required for a complete loop is constant for a constant
stress.

_ In the homogenization analysis below, use will be made of the
stress energy function(a, 6,&,,sgng)) for the SMA, which is
obtained by integrating Eq1) with respect to stress. Note that
because we are treating the hysteresis in the SMA as a pseudo-
elastic material with separate constitutive branches, two poten-
. tials, one for loading and one for unloading, are required. The
SMA is assumed to be isotropic and the energy function may be
written in terms of its isotropic stress invariants, (o) such that

SMA
300 ; :

250+

200

1501

100+

o MPA

50+

for £€>0: (7)
o [1— £(t) JFM[ (), 7o(t))]
5[5(‘)_ 1-FV[6(t), 7a(t))] 1}7‘3
3
2

o [1-&t)]
5[1—FM[0<ti>,re<ti)]]GMW'T‘&]

U(Teva'mxa):

N| W

~100 . ) : L L . . ) .
~0.04 ~0.035 -0.03 -0.025 -0.02 -0.015 -0.01 ~0.005 0 0.005 0.01

€

+

Fig. 2 Longitudinal, isothermal stress cycling with compres- 1 1
sion for an SMA fiber where the initial phase mixture and strain I
are determined by temperature 2k M 2u ®
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SMA The local potentials of th&l phasesu(") are assumed to be ho-
' ‘ ‘ mogeneous, and the phases perfectly bonded at the interfaces, so
that the potential for the composite can be written as

0.005 T T

N
ux, o=, x"xu (o) (14)
—0.005 r=1

where the characteristic functiong™ are equal to one if the

1 position vectorx is inside phase and zero otherwise. Spatial
averages ovef) and Q") are denoted by-) and{- ), respec-
tively. For example, the volume fractiarf”) are defined byc("
=(x"(x)). Also, the mean stress and strain are the averages of
the local stress and strain fieldg=3}_,c(V&” and o
=3N cWg), where the notationse=(e)(” and ot"
=(o)"” have been used.

Now, assuming that the size of the typical inclusion is small
relative to the size of the specimen, and that the boundary condi-
tions vary slowly with respect to inclusion size, the effective strain
of the composite may be written in the forfsee, e.g., Ponte
Castaeda, and SuqugB0)):

-0.01F

%

£ 0015}

BdW 001

-0.02¢

-0.025

-0.031

-0.035 : : . .
0 20 40 6 %OC 80 100 120 0 @
_ o
£= Fr (15)
Fig. 4 Thermal cycling of an SMA fiber with a constant tensile o
prestress

WhereU(E) is the effective potential given by

U()= min (u(x,0)). (16)
oeS(@)

for £<0: ®  Here,

[E(t)IFALO(), Te(t)] }T S(e)={0]V-0=0 in Q, on=on, on s} (17)

3
U(7e,0m,0)=75 lf(ti)_ A
2 1+ R (), me(ti)] is the set of statically admissible stresses with uniform traction on
w L&(t)] A the boundary. The effective behavior of the composite is fully
§5[1+FA[ ot).7 (t-)]]G [6,7c] described by Eqs(16) and (17). However, the determination of
et U (o) requires the solution of a nonlinear boundary value problem
1, 1, with random microstructure.
o omt 2u e To overcome some of the difficulties associated with the deter-
mination of the effective behavior of the nonlinear composite,
where the function§ correspond to the following integrals: Ponte Castaeda[5] introduced a variational procedure that can be
used to generate estimates for the potential functions of nonlinear
o composites in terms of the effective potential of a linear compari-
—) -do (9) son composite with identical microstructure.
Te Here, isotropy of the phases is assumed, so that the potential

functions may be written in the form

w J|se

+

i

GM[e,Te]:f FM[ 0, 7]

=iln(|cosk[aM(0dM—0)+er]|) (10)
bM € U(r)(ﬂ'):(ﬁ(r)(Te,O'm) (18)
p where 7, and o, have been defined previously.
GA[9,Te]:J FA[e,re](—) do (12) Then, the potential functions of the phases may be expressed in
Te terms of an optimization problem:
2 u(e)= max {u(e)-V Oy k), (19)
= F|n(|COSrEaA( g9A— 9)+bATe]|). ) K=o ° e
(12) . . . BN .
whereugy”’ is the potential function of an isotropic linear-elastic
3 Homogenization Estimates for Nonlinear “comparison” material with shear and bulk modulug{’ ,k{"),
Composites such that
Consider a representative volume elem@\E) occupying the YN I T 2
volume Q) comprised ofN distinct phases occupying subregions Up (o) = z,ug) Tet 2k£)r> Om (20)

Q) Consistent with the above discussion for SMA materials, the
constitutive behaviors of the individual components of the cong&nd
posite are assumed to be governed by a potential, or stress-energy

function, u, in such a way that the infinitesimal stress and strain VO(ug kg =maxug’(e)—u (o)}, (21)
fields are related by v
Using relation(19) in expression(16), and interchanging the
£(x) = ‘9_“()( o) (13) order of the minimum and the maxima, the following estimate is
do generated[5]) for the effective potential of the composite
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_ 1 O
x E(l)=¢r+E(M(l)fM(z))’l(MfM)

D g X[a+(MP=M®)~2(gD — )] (30)
(] cr% oz L DMV =M
/ g :(r—@(M -M)"H(M—=M)
. X[o+ (MDD =M@) =gV — 2],
P’ These equations for the average stress in the phases are used in the
x following section to estimate the stress in the SMA fibers to ini-

tialize the hysteresis funciions from Eq8) and (4).

In the above relationsM is the effective compliance tensor
of an elastic linear comparison composite with phase moduli
tensorM® and M@, distributed with the same microstructure
as the nonlinear composite. In this work, use will be made of
the Hashin-Shtrikman estimates of Walpdlg2—34 for fiber
composites:

Fig. 5 Fiber composite with local coordinate system

n
U(@)= max { Ug(@)- 2, VOl ) (22)
uy) g =t M ={cOMD+c@MP[1+ QM@ —M®)]~1}

whereU, (o) = 30- Mo is the effective potential of a linear com- {1 +c2[1+QMP —M®)]~ 1 -1, (31)
parison composite with precisely the same microstructure as the

original, given nonlinear composite. In this last relatidh,de- | these relations, the microstructural tenspris related to the
notes the effective compliance tensor of the elastic linear compafje||-known Eshelby tensofS, through theP tensor, such tha
son composite with phase moduli tenddf" andM®, and the —sM® andQ 1=M®PM® —pP)~IM®. Using Walpole's 34]

same microstructure as the nonlinear composite. notation theP tensor may be expressed in the form
It is possible to generalize the above estimate to include the
case where there are uniform prestraéff present in each phase 3 3k+7u 1
;Orlrr:1 this case, the local potential functions can be written in the P= BKT 8,u’0’0’0’12<,u+ 160" m . (32)
u ()= ¢ (re,0m) +€"- 0. (23)
Then, the effective potential function for the corresponding not Applications and Results
linear composite with prestrains becomes In this section, the nonlinear homogenization method discussed

in Section 3 is applied to the SMA-actuated fiber composites de-
picted in Fig. 5. Here, the matrix phase is taken to be isotropic,

2
U= U _ (O, 0 (D)
U(e)= max } Ur(a) Z‘l CTVT o ko) (24) incompressible, linear elastic with given shear modyl{, and

r r
no 5! the SMA fibers, which are assumed to be aligned in the
with Xz-direction with transverse isotropy in th&,(,x,)-plane, exhibit
the constitutive behavior described in some detail in Section 2.
v(r>(,ug> ,Kf;))= max{ug)(g')f &N (7e,0m)} (25) Therefore, the only source of nonlinearity in the composite arises

from the SMA fibers. On the other hand, prestrains may exist in

both the matrix and fiber phases, depending on the fabrication

and where conditions and thermomechanical loading history. The phase frac-
~ . 3 " tion of SMA, ¢@, is considered to be 0.33, and the phase fraction
Ur(o) 0rgng|(r13)(u0 ()&’ o) (26) of the matrix,c™, is 0.77.

Without considering minor loops, the constitutive behavior for

is the effective energy of a linear “thermoelastic” compositginconstrained SMA fibers at constant temperature evolves from a

Te Om

whose components have constitutive behaviors given by single, fixed strain state. This implies that a complete proportional
loading and unloading cycle will form closed loops. Alternatively,
=M g+ &N : . . . r

e=M"eg" 1 g (27)  unconstrained traction-free SMA will remain stress free during

ngrmal cycling. However, for constrained SMA fibers embedded
within a composite varying the temperature will cause internal
stresses to develop and evolve. Once the temperature has been
fixed, despite the presence of prestresses in the phases, the con-
Mt L (1) _ A2y =1 (1) (2) stitutive behavior will again evolve from a single fixed point in
7 +ei- ot 2lot(M M) e = &)] stress-strain space. However, the fixed point in stfdia ;) now
RN (1) _ M) —1f (1) _ (2) happens to occur at nonzero stress for both phases.
(M=M)[o+(M ME) (e —&™)] (28) The general solution procedure requires determining the loca-
where the notatiors; has been used to denote the mean value ton of the aforementioned fixed strain points for the SMA consti-
the prestraing(" . Using relation(15), the average strain for the tutive behavior and the surrounding matrix. These fixed points are
nonlinear(and linear comparisorcomposite is then found to be & function of the fiber-matrix interaction stresses created during
thermal phase transformation under traction-free conditions and
=Moo+ g+(M-M)(MD-M@)~1(g1) 2 (29) are determined by solving the appropriate expressions for jump
conditions between phases as described in the Appendix. Assum-
Also, the average stress in phasis given by relation ing that the evolution direction of is known, the correct consti-

Now, for a two-phase system, like the systems of interest in t
work, the variational problem posed in E@6) for the effective
thermoelastic potential is known to have the solufibavin [31]):

N[

DT(E)Z
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(1)
(2)
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Fig. 6 Loading and heating scenarios for SMA composite
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Journal of Applied Mechanics

tutive branch for the SMA is carefully selected. If temperature and
applied stress are driving the SMA towards different transforma-
tion directions, the constitutive branch is determined by whether
applied stress or temperature will dominate the evolution of the
martensite in the envelope functions in E¢®.and(6). Once the
correct branch is identified, the initial states of temperature and
stress in the SMA fiber are determined from E(R0) and the
traction-freeg; are calculated using Eq$36) through (38). Of
course, if temperature is fixed, tl# do not need to be recalcu-
lated. The homogenization procedure is then completed with the
final applied stress and the appropriate

The homogenization equations can be shown to reduce to two
coupled nonlinear algebraic equations+gnand M5,2> which are
solved usingMatlab scripts with a Levenberg-Marquardt method.

Four general stress/temperature loading conditions will be ex-
amined in this section as illustrated in Fig. 6, where th#& indi-
cates a change in the appropriate quantity. While these four cases
do not represent all possible combinations of temperature and
stress, they are representative of likely applications of the con-
trolled SMA composite.

4.1 Case #1. Case 1 demonstrates heating and cooling of
the SMA under traction-free boundary conditions for the compos-
ite. In Fig. 7 we have include three shear moduli for the surround-
ing matrix to illustrate the reduction in transformation strain as the
matrix becomes increasingly stiff. Not only is the maximum trans-
formation strain reduced, but the temperature required to achieve
a particular strain becomes higher with the stiffness of the sur-
rounding matrix. For purposes of controlling a system where
maximumstrain is the sole metric for control performance, these
results indicate that embedding within a more compliant matrix is
preferable. Maximum contraction is greater and the energy re-
quirements to achieve a particular state of strain are less.

4.2 Case #2. Case 2 demonstrates uniform tractions on the
composite followed by a single heating-cooling cycle of the em-
bedded SMA. In Figs. 8 and 9, we have applied longitudinal and
transverse tractions, respectively, where subsequent heating-
cooling cycles cause strains to develop and recede. The hysteresis
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Fig. 9 Initial application of transverse shear traction of 100 MPa on the com-
posite with subsequent temperature cycle

in the composite is biased by the combination of applied stredg®ermodynamic enhancement in convective heat loss. A higher
and internal fiber-matrix interaction stresses. In Fig. 8 where tlflex out of the composite correlates to faster rebound of the SMA
applied stress and the fiber-matrix interactions are primarily &nd the composite as a whole.

alignment and the fibers carry the larger portion of the load, the4.4 Case #4. Case 4 demonstrates three cyclic loading con-

shape of the hysteresis remains similar to the previous ca: et . ;
P ; ; itions for the composite after the SMA fibers have been pre-
Whereas, in Fig. 9, where most of the load is carried by the mat hcleglted. The three cyclic loading simulations include longitudinal

in shear, hysteresis development is dominated by stress du ) . h - -
fiber-matrix_interaction. However, a much smaller hysteres gactlons, transverse tractions, and both tractions applied simulta-

loop now forms in the transverse direction. This result is consis-
tent with stress development in the fibers of fiber-reinforced
composites.

4.3 Case #3. Case 3 considers embedding prestressed S =0 MPa,u("=500 MPa
fibers in a matrix prior to attempting a heating cycle. This cas " e T i ' '
differs slightly from that of Case 1 in that jump conditions are "
enforced with prestresses in each phase. The analysis of this ¢
is discussed in more detail in the Appendix. The hysteresis loo
in temperature-strain space in Fig. 10 have shifted towards higl ~0-9%5
temperatures without altering size or shape. We have seen in F

7 that the size and shape of the hysteresis is dramatically affec

by the stiffness of the surrounding matrix; however, this does n -o0.01
appear to be true for a pretensioning of the fibers. The shape ¢
maximum attainable strains in Figs. 7, 8, and 10 are identici_
Shape preservation of hysteresis loops under these conditions € _ 45t
function of the linearity of the surrounding matrix combined witt
the fact that the transformation temperature is simply offset by tl
effective stress as seen in the definitiong6fandF" in Egs.(5)

-0.02 ]
and (6).

The fact that the maximum attainable thermal transformatic
strain is not retarded by fiber prestress has implications for cont O <10 MPa
of the composite. Without using forced convection, there is r -0.025¢ x T:‘;ao MPa
active means of controlling SMA cooling rate and its associate + 1,80 MPa AN
low temperature shape recovery. However, by manufacturing t °

composite with prestress in the wires, there appears to be ame  _g03 ' - : : : : : : '
of accelerating shape recovery simply by using thermal gradien oo s e Y ® % 100
With a shift of the operational temperature range of the composite,

the relative difference between ambient temperature and temperig: 10 Initial longitudinal prestress in the fiber with subse-
ture of the composite can be increased. This increase provideguant temperature cycle
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Fig. 11 Initial thermal transformation strain with a single longitudinal traction
of 300 MPa on the composite

neously. The initial heating causes a transformation to austenié®, application of a transverse shear load to the composite after
and the subsequent cyclic tractions will increase and decrease fibating the SMA. Notice the longitudinal strain of the composite
quantity of martensite. caused by heating the SMA is unchanged while a hysteresis loop
In Fig. 11 the composite exhibits an initial heating-induced coriras emerged in the transverse shear direction. The magrénele
traction followed by a single isothermal longitudinal loading:losed arepof the transverse hysteresis loop is less than that
cycle. Figure 12 is a slight variation on Fig. 11. In this plot théound in Fig. 11. The final loading condition in Fig. 14 is the
SMA fiber is heated to a variety of different temperatures folecombination of longitudinal and transverse tractions. Hysteresis
lowed by a single traction cycle on the composite. Notice that theops appear in both transverse and longitudinal strain com-
composite assumes many of the characteristics of pure SMA wonents, where the hysteresis magnitude of each cycle is less than
der longitudinal tension. As the initial temperature is reduced pritinat of either Fig. 11 or 13. Individual hysteresis loops in each
to loading, hysteresis becomes less and less dramatic. Figure 1&tiess state become smaller as the number of stress states
increases.

SMA Fiber Composite, p{)=100 MPa 5 Concluding Remarks

The objectives in this work were twofold. The first objective
was to explore possible performance optimization—performance
] being best characterized by maximum contraction and largest
bandwidth of the system response as a whole—by varying the
possible “configurations” of SMA composites. Bandwidth here is
a concept from control theory describing a systems ability to track
sinusoidal inputs, where the larger the bandwidth in general im-
1 plies the system can successfully track higher frequency sinuso-
ids. However, these were found to not be complementary charac-
teristics. Some type of tradeoff would necessarily be expected for
any SMA composite. The second purpose was to determine the
feasibility of including such homogenization techniques in a
~ control-type environment. For homogenization to be a successful
component of a controller it must be both relatively accurate and
be computationally efficient.

In addressing the first objective, as would be expected, increas-
ing the matrix stiffness reduced the overall contraction of the
composite and required higher activation temperatures. In the ab-
sence of any criteria other than percentage contraction, a soft ma-
trix is more desirable. However, a soft matrix will suffer in band-
s 007 002 001 —0.01 o005 0 0005 001 o015 ooe Width performance for two reasons. First, the low activation

160 T

140

120

100

& MPa

60

40+

20

£ temperature reduces natural conduction of heat away from the

composite and slows transformation of the SMA back to marten-

Fig. 12 Initial thermal transformation strain with a single lon- site. Second, a soft matrix will have little restoring force. Interest-
gitudinal stress cycle of 200 MPa on the composite ingly, where tractions were applied to the composite or prestresses
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Fig. 13 Initial thermal transformation strain with a single transverse shear
stress cycle of 300 MPa on the composite

created during manufacturing, th&hape of the hysteresis re- In addressing the second objective, a simple three-dimensional
mained consistent with previous thermal activations where ti8MA constitutive law with an embedded Duhem-Madelung type
phases were initially stress-free. The position of the hysteregjgsteresis model was used in conjunction with homogenization. A
loops simply shifted to higher temperature regimes. Because CQfli,eralization of Ponte Castda's homogenization procedure to
duction is driven by temperature differential, in choosing a so. lud : f lated for th i d
matrix but including a pretension on the fibers, it may be possib'l'éC uae prestrains was ormu a@e to accognt_ or the complicate
to have large percentage contraction and better response time Pefpavior of the SMA. This particular constitutive model success-
course, this improvement has an associated cost in energy requisdy demonstrated the ability of a simple model to efficiently
ments for heating. capture many complicated behaviors of an embedded SMA. In the
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Fig. 14 Initial thermal transformation strain with a single longitudinal and
transverse shear stress cycle of 300 MPa on the composite
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future, better phenomenological models can be incorporatedmponentgn) of stress and tangential compone(ifsof strains
within the procedures developed in this article. By calculatinigp the phases to be continuolygt]=0, [ on]=0. The strains are
average stress and strain fields for the composite, homogenizaiigiermined by using the state of average stressco(¥

provides significant advantages over more traditional numericglc(Z)o,(z) combined with continuity of the traction stresses and
techniques, where inclusion definition and nonlinear constituti\fgg_ 5 '

behavior significantly increase computational time.
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Eigenstrains due to Transformation of Constrained Con- ) ) ) o
tinuous Fibers. The strains due to thermal activation and/ob-ikewise, tangential strain continuity implies
pretensioning of the fibers are functions of the stresses within each 1_ (2 1 _ (2 (1) _ (2 35
€337 €33, €437 893, €49~ Eygo - (35)

phase. Fortunately, with the average stresa known quantity
there are a sufficient number of equations to solve for theseWithout prestresses the jump conditions between fibers and ma-
stressegand thus obtain the strainsUnder the assumption that trix with an average stress are reduced to the following equa-
temperature distribution varies slowly over the composite bodijpns for the stresses in the fiber pha$®)( where we define

the temperature within a RVE can be considered a constant. Jum@(t),7e(t)] to be 3/20/D(&[6(t),7e(t)]—1) to simplify
conditions for the states of stress and strain require the nornmaitation:

2¢P0 5y cPog— 20yt c Vo + o33 2(0 5+ 033+ 0p) Ten' P + 3k P (20755~ 033 0 ) (T + 29[ O(1), 7o) T'?))

60(1),41,(1) 18k(2),re,u(2)
(36)
0= — gyt 2P 0ggt et € Vo — 2055 —2(0get 0agt 07) Teu'? + 3k P (0 g 20735+ 07 ) (Tt 29 O(1), To(1) | 1)
= M, + @, @
6¢c't 18k'“ Tou
(37)
o YLO(1), 7e(t) o3 N _(0(2)093)+a93_ g3 (38)
™ 20, @ 2@
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Antiplane Crack Problem in
Functionally Graded Piezoelectric
cunyuLi | [Vlaterials

G. J. Weng' _ » o _ _ _
Professor In this paper the problem of a finite crack in a strip of functionally graded piezoelectric
g-mail: weng@jove.rutgers.edu material (FGPM) is studied. It is assumed that the elastic stiffness, piezoelectric constant,
Fellow ASME and dielectric permitivity of the FGPM vary continuously along the thickness of the strip,
and that the strip is under an antiplane mechanical loading and in-plane electric loading.
Department of Mechanical and By using the Fourier transform, the problem is first reduced to two pairs of dual integral
Aerospace Engingering, equations and then into Fredholm integral equations of the second kind. The near-tip
Rutgers University, singular stress and electric fields are obtained from the asymptotic expansion of the
New Brunswick, NJ 08903 stresses and electric fields around the crack tip. It is found that the singular stresses and
electric displacements at the tip of the crack in the functionally graded piezoelectric
material carry the same forms as those in a homogeneous piezoelectric material but that
the magnitudes of the intensity factors are dependent upon the gradient of the FGPM
properties. The investigation on the influences of the FGPM graded properties shows
that an increase in the gradient of the material properties can reduce the magnitude
of the stress intensity factofDOI: 10.1115/1.1467091
1 Introduction ([7,11)). The preliminary results of fatigue tests indicate that the

Since the Curie brothers announced their pioneering discovéqﬁt'me of the actua?or can be S|gn.|f|cantly 'ncrea$m])'
of the piezoelectric effect in 1880, there have been a number ofS€cause of the brittle nature of piezoelectric ceramics the prob-
studies devoted to the theoretical analysis and engineering ap|i"S on fracture mechanics of piezoelectric materials have re-
cation of the piezoelectric materia(fLl—3]). Up to now, piezo- cel\_/ed much attention in recent decades. Some important contri-
electric materials have been found to have wide applications in tAgtions include Partofi12], Deeg[13], Sosa and Pafl4], Pak
smart systems of aerospace, automotive, medical, and electrddel, Suo et al[16], Wang[17], Dunn[18], Park[19], Park and
fields due to the intrinsic coupling characteristics between théhn [20], Zhang and Tong21], and Shindo et al[22], among
electric and mechanical fields. However, as the piezoelectric nethers. These literatures examined the general solutions of the
terials are being extensively used as actuators or transducers inrttgehanical and electric coupling and systematically studied the
technologies of smart and adaptive systems, the mechanical retack problems in piezoelectric materials. However, because the
ability and durability of these materials become increasingly ifFGPM are just an emerging class of piezoelectric materials, re-
portant. For example, piezoelectric bimorphs are a particular typearches on their mechanic behaviors are still very (f@#,24).
of piezoelectric deviceg4,5]). They usually consist of two long To our knowledge, there is still no article considering the fracture
and thin piezoelectric elements, which are bonded over their lopgoblem in an FGPM.
faces by using adhesive epoxy resin, and suitably covered withThe main objective of this paper is to explore the fracture me-
electrodes. The principal disadvantage of this kind of materials daanics of FGPM. We consider a finite crack problem in a strip of
that the bonding agent may crack at low temperature and creeggip\ under antiplane mechanical loadings and in-plane electric
high temperature. These drawbacks may lead to lifetime limitatiggagings. We assume that the elastic stifiness, piezoelectric con-

and restrict the utility of piezoelectric actuator in the area of meagan; ‘and dielectric permittivity of the FGPM vary continuously
sured devices that require high reliabili}6]). To meet the de- 5,g the thickness of the strip. But in order to overcome the

mand of qdvanced piezoelectric materials |n.||fet|me and rellabl ‘omplexity of the mathematics involved, we shall focus in this
ity and with the help of the development in modern materi

processing technology, the concept of functionally graded matelri_ltla| study on a special class of FGPMs in which the variations

als has recently been extended into the piezoelectric materigkt?esef}p(rjopertlesl_aﬁ n thtﬁ sa_m;le propor?otp]. The?e .WIOUId gt_llovtv
([6—10])). These new kind of materials with continuously varying'> ‘0 Sh€d some Iignt on the infiueénce of the matenal gradien
properties may be called functionally graded piezoelectric mateHPON the stress and electric intensity factors. Instead of using the
als(FGPM). The advantages of using a device wholly made of tHPProximate |mpermeat_)le boundary conditions along the crack
FGPM or using an FGPM as a transit layer instead of the bondifyfaces as many studies have done, we shall study the crack
agent are that no discernible internal seams or boundaries exgblem using the exact boundary conditiof81]). Zhang and
and that no internal stress peaks are caused when voltage is B2g[21] have found by analyzing an elliptical cavity that the two
plied and thus failure from internal debonding or from stressommonly used boundary conditiofise., impermeable and per-
peaks developed in conventional bimorphs can be avoideteable are actually two limiting cases of the exact boundary
conditions when the cavity approaches a slit crack. In our work,
*Author to whom correspondence should be addressed. the crack problem is first reduced into two pairs of dual integral
Contributed by the Applied Mephamc; Division o AMERICAN SOCIETY OF equations by using the Fourier transforms. They are then reduced
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . dh I . | . fth d ki d hi d |
CHANICSASME . Manuscript received by the ASME Applied Mechanics Division,mtO Fredholm integral ?quat'ons of the second kind. S .'n oetal
May 30, 2001; final revision, November 21, 2001. Associate Editor: M.-J. Pinderg22] have developed this approach for crack problems in a homo-
Discussion on the paper should_ be adgiress_ed to t_he Edltor, Professor Lewwq@neous piezoelectric ceramic strip, and it is now extended to the
Wheeler, Department of Mechanical Engineering, University of Houston, Houstol rack bl in FGPMs. The cl df fsi | d
TX 77204-4792, and will be accepted until four months after final publication of thefac .pI’C.) emsin s. Ihe C ose orm.s orsingu gr stress an
paper itself in the ASME GURNAL OF APPLIED MECHANICS. electric fields around the crack tip are obtained. The influences of
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the FGPM graded properties on the stress intensity factor a
electric displacement intensity factor are investigated. It is ol
served that an increase in the gradient of the material propert
can reduce the magnitudes of the intensity factors.

2 Basic Equations of Functionally Graded Piezoelec-
tric Materials

Consider a linear piezoelectric material. The governing equ
tions in the Cartesian coordinategi =1,2,33) are given by

o-i“-=0 and Di,i=0, (2)

whereay; is the stress tenso; the electric displacement vector,
a comma denotes partial differentiation with respect to the coc
dinatex;, and the Einstein summation convention over repeatt
indices is used.

For an anisotropic functionally graded piezoelectric materiz
the constitutive relation is

i = Cijki €k~ €ijExk (2
Di=eew+ €ikEx, ©))

wheree, is the strain tensoii, the electric field intensity, and
Ciji » €ij» €ik are the elastic stiffness tensor, the piezoelectr

tensor, and the dielectric tensor, respectively. Unlike in a hom D, or E,
geneous piezoelectric material, thgy , ey;, and € are now
functions of the coordinates(i=1,2,3). Fig. 1 An antiplane crack problem of functionally graded pi-

From the restrictions set by the crystal symmetry, the integzoelectric materials
change symmetries of the material property tensors are
C”k,' ik = Cjika = Gy ,ek” Giir Sk Elf" “) transversely isotropic functionally graded piezoelectric material.
The relation between the strain tensor and the displacementrige electric and antiplane mechanical loadings are shown as Fig.
given by 1. A set of Cartesian coordinates,Y,z) is attached at the center
) of the strip and the principal axes are taken to coincide with the
reference axegx, y, andz, in which z is the poling axis. It is
where u; is the displacement component and the electric fielflso assumed that the strip is thick enough in zkdirection to

1
&ij =7 (Ui j+Uj ),

intensity is allow a state of antiplane shear. The crack is situated along the
E=—o, ©) planey=0. _ _ _ _ _

: L Under the antiplane mechanical loading and in-plane electric

where ¢ is the electric potential. loading, only the out-of-plane displacement and in-plane electric

Suppose that the crack is filled with air, then the electric potefields need to be considered. We take the notations as follows:
tial inside the crack should satisfy the following equation:
Uy=Uy=0, U, =U,X,y),
V2¢=0, (1)

. . . . Ex:EX(X!y)i Ey: Ey(XIY): EZ:0 (10)
and the relation between the electric displacement and the electric .
field intensity is given by where (,,uy,u,) are components of displacements &&d, E, ,

E,) the components of the electric field vector. In this case, the
Di= ek, (8) constitutive relations Eqg2) and(3) can be simplified as

where € is the permittivity of vacuum. Oyy=Caally y— €15Ey ,
It is well known that the piezoelectric effect exists only in crys- ’

tals that do not have a center of symmetry. What has been com- Oyz=Calzy—€1sEy,

monly studied in the literature and also one of the most useful

types is the transversely isotropic piezoelectric material belonging D= ersllzx € 11Bx,

to the hexagonal crystal class 6 mm. For this kind of material, by Dy=ejel,,+ € 15Ey (11)
taking direction 3 to be the axis of symmetry, the nonzero material
parameters are where (oy,, oy,) are the stress components afd,, Dy
the components of the electric displacement vector. The subscript
€11127= €222~ C11, €112~ Ca2, comma denotes the partial derivative with respect to the
e Conae G Coneie C coordinates. o _ _ _ _
11887 +2233~ ~13» 3333~ 33 As shown in Fig. 1 with the shaded region showing an increas-
C2305= C3131=Casr  C1215= 3(C11— C1p) = Cgg, ing intensity, the material property parameters are taken to vary
continuously along thg-direction inside the strip. To achieve our
€311=€329= €31, 333=€33, ©€113=€23= €15, objective of obtaining the stress and electric fields in the FGPM,

we consider the following distribution to simplify the problem:
_ Caly)=Chu1+aly]),  ew(y)=edf1+aly),
3 Antiplane Crack Problem 0 .

Een(Y): e 1(1+aly], (12)

To obtain the singular stress and electric fields, we consider th _ _ )
simplest crack problem, i.e., the antiplane Griffith crack. The fiwherek is a constant and: can be determined by the material
nite crack of length 2 is embedded in an infinite long strip of aproperty parameters. If we use the notation$,(eJs, €9,) and

€22~ €11- )
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(chs.€ls, €'l to stand for the values at the plage=0 and the  Considering the symmetry of the problem about yhaxis, we
surfacesy=*h of the strip, respectively, the expression @f introduce the Fourier cosine transforms to E@§) and(26). The
will be solutions are obtained as

1 %
@ (Veddciu1). (13) uz(xyy):%fo <1+ay>-ﬁ{Al<s>lﬁ

Due to the assumed proportionality of the property variations in
Eq. (12), this gradient parameter also serves to characterize the
variation of other material constants.

Substituting Eqs(11) and(12) into Eq. (1), we can obtain the
governing equations in the following forms

S
(1+ay) Z}

S
+A(S)Kg (1+ay);

] cogsxyds+ayy, (27)

ka

1+ay

2 (= s
¢(X.y)=;fo (1+ay)‘5{Bl(S)I5 (1+ay);}

o Vet 2, |+ et Ve =0
Ca4 u; 1+ayuz,y €15 ¢ qﬁ,y ’

S
+By(S)Kg (1+ ay);

] cogsx)ds—bhyy, (28)
=0,

02 ka 0 w2 ka
€15 \Y UZ+ 1+—(1yu2’y — €11 \Y ¢+ m(by
14) wherepB=(k—1)/2,14, andK are the first and second kind of
(14) B B
P TR T YR . . . modified Bessel's functions, respectivel;(s), Bi(s)(i=1,2)
whereV?®=g%/dx"+d°/dy" is the two-dimensional Laplacian op- 516 the unknowns to be solved, aad, b, are real constants,

erzligtor in the ;’f‘h”ablez an((jjy. trv ab . i which will be determined from the edge loading conditions.
ecause of the assumed symmetry aboutytais in geometry o gyrass electric field, and electric displacement expressions

and the applied loading, it is sufficient to consider the problem f - :
x=0,y=0 part only. Thus the boundary conditions for this prob%ran be derived from Eqs27) and (28) along with Bq.(11) as

lem become 2 (= 8
Yy)=—— 1tay)” A
o, (Xx0=0, 0=x<c, (15) oxA%.Y) Wfo S(1+ay) 7| [Cady)A(S)
U,(X,00=0, c=x<o, (16) s
+e B1(S)]l 5| (14 ay) —|+[caa(Y)As(S
E,(x0")=ES(x07), 0=x<c, 17) 15(Y)B1(S) ]l | ( Y)a [Caa(Y)Ax(S)
= <=x<o S|l .
P0=0, e=x==, (16) +eu(y)By(5) K| (1+ay) | sin(sxds,  (29)
D,(x,0")=Dy(x,07), 0=x<c, (19)
_ 2 (* S
oyAX,0") =0y, (x,07), Cc=<x<e, (20) oyz(x,y)=*;J' ([ﬁa(l+ay)ﬂllﬁ (1+ay);}
oy =Ty, 0=x<w, (21) ’
. s
Case 1. =s(1+ay) Ply (1+ay)— ][cM(y)Al(s)
Dy(x,n)=Dg, 0O=x<c. (22)
s
Case 2: +e1g(y)Bi(s)]+1 Ba(l+ay) 71K, (1+ay>;}
Ey(x,n)=Ep, O=x<e= (23) .
where the superscript stands for the electric quantities in the —s(1+ ay)*ﬁKlg (1+ay)— ][044(y)A2(s)
void inside the crackDg is a uniform electric displacement, and a
E, a uniform electric field applied externally. The shear stress can
be expressed as +els(y)Bz(S>])cos(SX)dS+ Cady)as—e1s(y)by,
Cha els
—ro— —D,, (Case 2, (30)
Th=1 Cas4 €11 (24) 5
* s
70— €}sEo, (Case 3, Ex(x,y):;f s(1+ay)‘5[ Bi(s)l g (1+ay);}
0

where 74 is a uniform shear stress at zero electric loading and

—h _h hy2, _h : : ; ;
Chs=Cyqt (e70)°/ is the piezoelectric stiffened elastic S
cé)ztr]sta‘ﬁt, (e197 s p +Ba(s)Kg| (1+ ay) ” ]Sin(SX)dS, (31)
i 2 (= S
4 Solution of the Problem E,(x,y)= —f ([ﬂa(l+ay)ﬁllﬁ (1+ay) _}
Since @%5)2+c9,e%,#0 in general, it can be obtained from mJo @
Eq. (14) that s
o —S(1+ay)_ﬁll'; (1+ay)ZHBl(S)
2 _— =
V2u,+ Tray Yoy 0, (25) .
ka +[,Ba(l+ay)ﬁlKﬂ (1+ay);
2 =
V2¢+ Tray é,=0. (26) .
Now the problem has been converted to finding the displacement —s(1+ay) Ky (1+ay) - ]Bz(s))
field and the electric potential that satisfy E¢&5) and(26) and
meet the boundary conditions Eq45)—(23). X cogsx)ds+by, (32)
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2 oo
Du(X,y)=— p fo s(1+ ay)ﬁ[ [e1s(Y)Aa(S)

s
—en(Y)Bi(s)]lg (1"‘“)’); +[es(y)Ay(S)

S
—e11(Y)Ba(s) JK g (1+ QY)Z sin(sx)ds, (33)

2 (= o s
Dy(X,Y):—;L Ba(l+ay)™? |5(1+HY);

—s(1+ ay)fﬁlb (1+ CZY)S ][els(WAl(S)

—en(Y)By(s)]+1 Ba(l+ CYY)_’B_lKB

S
(1+ay) ;}

—s(1+ay) PKp (1+ ay)z ][els(y)Az(S)

—€ 11(Y)Bz(5)]) cogsxds+es(y)a;
+en(y)by, (34)

wherel ; andKj, are derivatives of ; andK g, respectively.

On the other hand, in the vacuum between the crack surfaces,

the electric potential that satisfies H@) is

2 o<}
¢>°(x,y):;f0 C(s)sinh(sy)cogsx)ds, 0=x<c (35)

where C(s) is also an unknown. The electric fields and electrig s)=
displacements in the void inside the crack can be obtained as

E(x,00=0, 0O=x<c, (36)
2 o
Ey(x,0)=— p f sC(s)cogsx)ds, 0=x<c, (37)
0
D$(x,00=0, O=x<c, (39)

2 <)
D;(X,O):—;j €oSC(s)cogsx)ds, O0=x<c. (40)
0

By applying the edge loading conditions of E¢®1)—(24), the

following relations between the unknown functions can be found:

As(S)=RyAq(S), (41)

Ba(s)=R21Bi(s), (42)
where
Ba(1+ah) M 4 (1+ah)s/a]— slp[(1+ah)s/a]

Ro1™ Ba(lt an) K (1 ah)sial Ky (1 ah)s/a]
(43)

Meanwhile the constants,, b, can be determined as follows:

h h h h
€117h €150 CaDo—€157h

=Th _h o 2 = h o2 (Case
Vel (ely)? Yl (ely)?
(43)
7+ €fsEo
alz—ch—, b,=E,, (Case 2. (44)
44

Substitutions of Eqs(31), (36), and (28) into the boundary
conditions of Eqs(17) and(18) yield a pair of dual integral equa-

tions of the following forms:
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jwsBl(s)[I g(8/a) +RyKg(s/a)]sin(sx)ds=0, O=x<c,
0
(45)

fxBl(S)[IB(S/a) +RyKg(s/a)]cogsx)ds=0, c=x<o,
0

(46)
If we define

me? (1
B(S)[1g(s/a) + RaKy(sl )] = —— fo VED(£)Jo(sc)de,
(47)

whereJy( ) is the zero-order Bessel function of the first kind, then
Eq. (46) is satisfied automatically and the satisfaction of &)
requires that the functiod® (¢)=0. Therefore we can determine
that the unknown functiorB,(s)=0 and then straighth\B,(s)
=0.

Noting above results of the unknown functioBg(s), Bs(s),
substitutions of Eqs(27) and (32) into the boundary conditions
(15) and(16) yield another pair of dual integral equations

- 0 _ Ob
st(s)A(s)cos{sx)ds=gLoelSl, Oo=x<c,
0 Caq
(48)
fwA(s)cos(sx)ds:O, c=X<o, (49)
0
where

A(s)=A(S)[I g(sla) + RyKg(s/a)], (50)

[Bal g(sla)—slp(sla)]+ Ro BaK 4(s/a) —sKy(s/a)]
sl (sl @) + RyiK g(s/ ) ] '

(51)

Following the method proposed by Copd@b], the solution that
satisfies Eqs(48), (49) can be written as

c? cha—edb; (1L
AS)= - fo VEW(&)Jo(scorde,  (52)
44

which satisfies Eq49) automatically. The satisfaction of E(0)
requires that function’(£) be governed by the following stan-
dard Fredholm integral equation of the second kind:

1
W)+ fow)e(a ndn=E. (53)

The kernel functiorG(&,») in Eq. (53) is

G(&,m)=\én L S[F(s/c)—1135(sé)Jg(sm)ds.  (54)

5 Singular Stress and Electric Fields Around the
Crack Tip

In order to obtain the stress and electric fields around the crack
tip we follow the analysis of Sih and Emblg®26] on the stress
singularity at the crack tip to consider the singular behaviors
of the stress, electric field, and electric displacement by setting
S—0,

Integration ofA(s) in Eq. (52) by parts yields

me coa—edh; 1

A= ——a 5
44

d

1
- JO §Jl(SC§)d—§

[\P(l)\]l(sc)
W(§)

|
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whereJy( ) is the first-order Bessel function of the first kind. The e K P
integral in Eq.(55) is bounded at the crack tip=*=c. Thus the Dy(rq,6;)=— 71T5 i sin( _1) +0(r9), (67)
singular behaviors of the stress and electric fields are governed by Cag N2mry 2
the leading term containing’(1). From Eqs.(29)—(34) and con-
sidering the following asymptotic behavior of the modified Bessel D.(r1.6:) egs K {01 Lo (68)
. r{,0)=—5 cog — ry).
functions whers— o, yllr, 01 024 \/m 2 1
1 1 T 1 i i i i
| (5)= - 140 g” Ky(s)= /2_36_3 140 5” The stress intensity factd€,, in Egs.(62) and(63) is
V2ms
(56) Kin=(cia1—elahs) VmeW (1), (69)
1 1 - 1 whereW (1) is the value of¥’(§) evaluated at the crack tip cor-
1 p(s)= e’1+0 _” K,g(s)=—w/—e’s 1+0 _” responding tf=1. _
\2ms S 2s S As for the electric fields, it has been observed from Ef)
(57) that no singularities exist in them. This conclusion is the same as
d aft i d alaeb btai that for homogeneous piezoelectric materigise, e.g.[22]).
and, after complicated algebra, we obtain If we express all the near-fields as in the traditional linear frac-
E,=0, E,=E, (58) ture mechanics, we have
X 1 Yy ’
(0. 0 Ki2 KE 6 E 0
Ty AX,Y) (Cagar—€1501)cV (1) (1+ ay) E(ry,0p)=— I Sin(_l)‘ Ey(ry,0:)= n CO%_l)'
% 27TI’1 2 277']‘1 2
Xf Ji(so)exp( —sy)sin(sx)ds+...,  (59) (70)
0
0 0 Ki2 __ K 6 _ K 01
Ty X,Y) =~ (a1~ efgh1) CW (1) (1 + ay) Talln,0)= = F=sin 5 |, oydri, )= Z==co 7 |,
” (71)
X | Ji(sc)exp —sy)cogsx)ds+..., (60)
i Dy(rq,01)=— Kﬁ' sin(ﬁ) D,(rq,,0,)= Kﬁ' cos(ﬁ)
9(1)5(C914a1*925b1) W2 AT \/Frl 2 Ty \/Frl 2)
Dixy)=———o— —c¥(1)(1+ay) (72)
44
o ' where Kﬁ is the electric field intensity factoKj, is the stress
XJ Ji(scjexp(—sy)sin(sx)ds+...,  (61) intensity factor, and?, is the electric displacement intensity fac-
0 tor. These field intensity factors are then given by
0 0 0
€15(C4481 — €1501) E_
Dy(x,y):—wc\lf(l)u#—ay)k’z Ky =0, (73)
Caa o 0 0
oo Kii =Ky = (cggay—e1ghy) Ve W (1), (74)
XJ’ Ji(sc)exp(—sy)cogsx)ds+.... (62) & &
0 15 15
K ==Ky :C—O(c24al—e§’5b1) JmcW (1). (75)
Evaluation of the integrals in Eq§59)—(62) yields 44 44
* 6 Results and Discussion
Ji(sc)exp(—sy)cogsx)ds ) ) )
0 The expressions in Eq$70)—(72) for the near-tip stress and
electric fields show that the stresses and the electric displacements
1 1 r 1 1 at the crack tip in functionally graded piezoelectric materials still
- T ECO 0— 5‘91_ 5'92 , (63) possess the inverse square root singularity in terms of the local
12 coordinate at the crack tip and the angular distribution functions
® are also the same as the cases of homogeneous piezoelectric solids
f Ji(sc)exp(—sy)sin(sx)ds with cracks. This is a very important conclusion. Because the
0 complexity of electromechanical coupling terms in piezoelectric
materials plus the nonlinear terms brought by the graded proper-
N S (P (64) lies to obtain the analytical solution of the crack problem of func-
Jrir, © 2t 272 tionally graded piezoelectric materials is rather difficult, many

The polar coordinates, rq, r,, 6, 6,, and 6, are defined in

Fig. 1.

Substituting Eqs(63), (64) into Eqgs.(59)—(62) and considering
0—0, 6,—0 andr,—2c whenr—c, we obtain the following

near-fields of stress and electric displacement

ST 0
sz(rl,al):_ \/ﬁsm ? +O(r1):
1
K 01 0
oyry,01)= \/ﬁco > +0(r7),
1

Journal of Applied Mechanics

(65)

(66)

practical engineering fracture problems related to functionally
graded piezoelectric materials should be solved with the help of
some numerical methods. The conclusion deduced from this paper
provides a theoretical base for these numerical methods in their
simulation of the crack-tip stress and electric fields in functionally
graded piezoelectric materials.

It is observed from Eqs(74) and (75) that the forms of the
stress intensity factor and the electric displacement intensity factor
in the FGPM are similar to those in the homogeneous piezoelec-
tric material. Their values, however, are different becaasand
b, depend on the properties at the outer surfacesth. Since
the electric displacement intensity factoﬁ, is proportional to the
stress intensity factdKj; , we shall illustrate the variation dfj),

JULY 2002, Vol. 69 / 485
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Fig. 2 The variations of the normalized stress intensity factor
with the ratio of cf{4/ 024 Fig. 4 The variations of the normalized stress intensity factor
with the ratio of c¢/h

only in what follows. The variation ofK[, can be obtained . 0
. _— - : can be seen that the greater the raticpfc,, the stronger the
straightly through multiplying theKj, by the proportional con- i ence of the gradient exponekt However, the influence is
stante25/c24. dominant only wherk is in the range between 0 and 3. When the
Figure 2 displays the variations of the normalized stress intevalue of k is beyond 3, its influence becomes weak. It is also
sity factor Ky, /7€ (Where og=cg,a;—el:b;) with the ratio observed that for a definite]}/c3, and a definitec/h the normal-
ch/cd, atc/h=0.2. It is evident that the normalized stress intenized stress intensity factor decreases when the valkereduces.
sity factor decreases with the increasecpfcy,. This means that If we define the gradient index as the local gradient of the
the stress and electric displacement intensity factors can be R&PM, this means that the stress and electric displacement inten-
duced by increasing the material property gradient of functionalfjty factors can also be reduced by increasing the local material
graded piezoelectric materials. Figure 2 also shows that the infRroperty gradient of functionally graded piezoelectric materials,
ence of the gradient exponekittends to increase with increasingbecause we know from E@13) that the reduction of the value
material gradientl,/c3, In addition, when the ratio o€},/c2, results in the increase of the local gradierfor a definitec/c2,
approaches to 1, which is the case of homogeneous piezoelechi€ a definitee/h. For the sake of explanation, the influencekof
materials, our results approach the result of corresponding préti the gradient of the material propedy,(y) is shown in Fig. 4.
lem in a homogeneous piezoelectric matejal]). This implies The variation of the normalized stress intensity factor
the correctness and accuracy of our results. Ky /ooy with the ratio of crack length to strip thickness is
Figure 3 illustrates the effect of the gradient exporfenn the shown in Fig. 5. Different from the case for homogeneous piezo-

variations of the normalized stress intensity fadtqr/ o /7c. It  €lectric materials, in which the normalized stress intensity factor
increases monotonically with increasimgh, the normalized

stress intensity factors initially decrease and then gradually in-
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Fig. 3 The effect of the gradient exponent  k on the normalized
stress intensity factor Fig. 5 The variation of the gradient with the exponent k
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Fig. 6 The effect of the electric displacement on the normal-
ized stress intensity factor

Fig. 7 The effect of the electric intensification on the normal-
ized stress intensity factor

crease with increasing/h. The greater the gradient of the mate_ple_lcements. F((_)m _Eq$;73)—(75),_however, it can be seen that the
ite permeability in the crack is not related to the singular parts

rial property is, the steeper the initial decrease of the normaliz athese variables. As we are mainly concerned with the fractural

stress intensity factor. This phenomenon at first glance may se - . L
; ; avior (the singular parjsof FGPMs, the effect of the finite
to be unreasonable, but it can be explained. Suppose the Crpgl?meability is not an issue here.

length was definite, and then the strip thicknessould decrease
with the increase of/h. On the one hand, from E¢L3) we know 7 Conclusions
that the decrease dfimplies the increase of the gradiemt Thus
the material property gradient would increase with the increase ofThe problem of a finite crack in a strip of a functionally graded
c/h. In the above two paragraphs, we have deduced the conghiezoelectric material is studied. It is assumed that the variations
sion that the normalized stress intensity factor decreases with tifethe elastic stiffness, piezoelectric constant, and dielectric per-
increase of the material property gradient. So the phenomenonnaiftivity be continuously varying along the thickness of the strip
the normalized stress intensity factors initially decreasing with trend the strip is under antiplane mechanical loading and in-plane
increase ot/h is thus explained. On the other hand, the upper arelectric loading. By using the Fourier transform, the problem is
lower free boundaries of the FGPM strip usually have the effect &fst reduced into two pairs of dual integral equations and then into
increasing the stress intensity factor. With the decreade dfie Fredholm integral equations of the second kind. The near-tip sin-
effect of the free boundaries becomes stronger. Wbkm in-  gular stress and electric fields are obtained from the asymptotic
creases to a certain point, i.e., when the valué decreases to a expansion of the stresses and electric fields around the crack tip. It
certain value, the effect of the free boundaries starts to offset tisefound that the forms of the singular stress and electric fields at
influence of the gradient, and then the stress intensity factitve tip of a crack in the FGPM can be cast in the same forms as
gradually increases. those in a homogeneous piezoelectric material. This result is very
In order to uncover the effects of the electric intensification arichportant in that one can use conventional numerical methods of
the electric displacement on the stress intensity factor, we fgacture mechanics developed for homogeneous piezoelectric sol-
define the normalized stress intensity factorkg§/ ro/7Cc and ids to study the crack problems in such a class of functionally
derive the explicit expressions for the two cases of free bounddi{aded piezoelectric materials.
conditions as follows: The computed results show that the gradient of the material
property has a considerable effect on the fracture behavior of an
FGPM. It is found that increasing the gradient of the material

02 0
(€1s) €5 Do s _
0 _0 properties is helpful to the reduction of the stress and electric

p

Case 1: 5 —0—)\If(1), (76)

f —3(1+
.To\/7TC Y

0
c
4€11 €11 70 displacement intensity factors.
Case 2: :(f—eOE)\m) (77)  Acknowled
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TU Vienna, the matrix and the coating are the same but with different plastic strains. Homogeneous
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coating. A general theory of plasticity is developed for arbitrary loading based on incre-
mental elastoplastic analysis. The consideration of inhomogeneity of plastic strains in the
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1 Introduction used differential self-consistent schemes for obtaining approxi-

— _— . . mate constitutive relations applicable for a large range of inclu-
Significant contributions to the micromechanics of metal maméion concentrations PP 9 9

compositegMMCs) have_ been given _by Dvorak and co-yvorkers The three-phase spherical modste, e.g.[20]) and its gener-
[1-3] by the use .of particular mean field metths. In this framegizations were used by Zhu and Wefy] to predict the creep
work the distribution of the plastic part of the strains as well as thgshavior of metal-matrix composites and by Olsson efi24] for
stresses within the components are assumed to be homogeneglastoplastic analysis of thermal cycling of particulate composites.
For a deterministic, periodic arrangement of inclusions this affaggart and Bassaf3] as well as Herrmann and Mihovskg4]
proach was extended by Dvorak et [@8] to mean fields varying showed a principle role of the concentration of plastic strains in
of over subdomains. For random packing in the framework of thbe vicinity of the inclusions in the overall deformation properties
original mean field assumption the average stresses inside @fiecomposite materials.

components can be estimated by different methods. Most popu|aﬂ-he classical mean field method uses the first-order statistical
and widely used methods are variants of effective mediin Moment of stresses in each individual component. A modified
6]) and mean field methodf2,7,8)). Since the widely used mean- Mmethod, based on the average second moment of s_tresses in the
field methods are capable of estimating only the average stresgg@Ponents, was proposed by Buryachenko and Lipd@5y,

in the components, its use for the averaging of functions descr@lu_ anq Weng[_26], Ding ar_ld Weng[27_] (568[28’.291) for the
ing nonlinear effects, e.g., strengll®,10)) yielding ([11]), hard- estimations of different nonlinear effective properties such as elas-

ening ([12]), and creed[13]) may be limited, because in realitytICIty, plasticity, and viscosity. Other theories basing on a similar

L . o ) . rinciple are connected with generalizations of the Hashin and
significant inhomogeneities of the stress fields in the compone Rtrikman [30] variational principles to nonlinear materials, as

(especially in _the materc_an be obtained. _ proposed by Talbot and WillE31] (see[32]).

When plastic deformations occur, the homogeneity of the me-The present contribution is aimed at investigating the elasto-
chanical properties of the components is lost and the local profastic behavior of two-phase materials in the framework of flow
erties of the phases become position-dependent. Exact solutigiisory and small elastoplastic strains. Ellipsoidal coated inclu-
by analytical or numerical methods can be obtained only fgjons with the same shape, oriention, and mechanical properties
model composites having deterministic phase arrangements, segh statistically uniformly distributed inside the space. Each inclu-
as composites with regular micro structsee, e.g.[2,14—17). sion consists of an elastic core and a thin coating. The mechanical
Alternatively, nonlinear multiphase materials may be described Ipyoperties of the coating are the same as that of the matrix. Ho-
self-consistent schemes. For example, D[4@] as well as Lee mogeneity of the plastic strains is assumed inside the matrix and
and Mear[19] studied a special case of infinitely small concenin individual subdomains of the coating, which are considered as
trations of heterogeneities in nonlinear matrix composites af@dividual components. By this means the proposed method can

be considered as a logical extension of the transformation field
" IPresent address: Air Force Research Laboratory, AFRL MLBC, Oh 45433-77580alysis by DvoraK1] to random arrangement, when the phases
e-mail: buryach@aol.com. with inhomogeneous stress states are subdivided into a finite num-
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use of finite element analysis. The employment of the proposegnt inside the each individual subdomafp. In the core of the
theory for predicting the elastoplastic deformation behavior ofigcjusions we assumeg(x)=g@+g,;(x)=g?+g;; 6 (x)

model material with a finite concentration of inclusions is shown. const forxe v, The upper index of the material properties

tensor, written in parentheses, shows the number of the respective

2 Mechanical Properties and Geometrical Structure of component:(?) correspond to the matriX? to the core of the
the Components inclusions and® (k=2,n°+1) to the coating. It is assumed that

) ) ) the representative domaim contains a statistically large number

2.1 Leading Equations. Letthe total local small straie be  of inclusionsy; ; all random quantities under discussion are de-

decomposed into an elast¢ and plastice” contributione=e®  scriped by statistically homogeneous ergodic random fields and,
+¢&P. The local constitutive equation, which connects the loc@lence, the ensemble averaging could be replaced by volume av-
stress tensoo(x) and the local elastic strain tenssft is given in eraging((.)) and((.))® (k=0, ... n°+1) for the overall aver-
the formo(x) =L (x) €%(x), whereL (x) is the fourth-order aniso- age and for phase averages, respectively. The bar appearing above
tropic tensor of elasticity; in particular for isotropic materlal the region represents its measues mesv. V¥ is the charac-

= |(3k|£lX)’il;(;(c)j)E;Ié(i(lz’e)llbﬂil;(ﬁc)jl\ézh’e;\lrhgfd%zggli% ’t\lhze teristic function ofv . The average over an individual inclusion
=17y, M u ) ) 1) (j= S i = @D i 5. (1)
unit second-order and fourth-order tensors. At the macrodomainvégv. (i=12...): .|sdef.|ned by((-)); <(').> It viev.
. . " . is the concentration, i.e., volume fraction, of component
uniform boundary traction conditions generating the homogg-(k) ® ® (1) _—s (1) ~(0) 0 B
. . cW=(vy, =20 cP=1-3c (k=0,...n
neous macroscopic stree8 are given, the phases are assumed {0 : o m . .
be perfectly bonded. +1;1=1,...n°+1m=1,2,...). In thefollowing the notation

For the description of the behavior of the matrix and the elastitl-)(¥[X1; . . . ;) is used for the conditional average taken for
plastic coating the so-called,-flow theory with combined the ensemble of a statistically homogeneous ergodic field
isotropic-kinematic hardening is used. The von Mises form of thg (i), on the condition that there are inclusions at the points
yield surface is given by X1, ... Xm and  Xy# ...#Xy,. The notation ((.)

X(Y)|:Xq; « . . Xm) Means the casg¢ vy, ... Um-
f=7r—F(y)=0, F(0)=rm 1)

in terms of the effective stress and plastic strain increments, as .

defined by7=(1.53s3)"2 dy=(2dePdeP/3)2 HereF is a 3 Aver_age Stre_sses Inside the Components and Over-
nonlinear function describing the hardening effect, for exampfl Elastic Moduli

F(y)=r1o+hy", whereh andn are the strength coefficient and A general infinite system of integral equations can be derived
the work-hardening exponent, respectivefi=N,(o—aP) is the (see for references and details Willz3] and Buryachenk®29])
deviator of the active stressea? is a symmetric second-order
tensor corresponding to the “back-stress” defining the location of
the center of the yield surface in the deviatoric stress space. F
the evaluation of the back stres8 Ziegler's hardening rule is
used:

gOIX1; %) = Zl f Fx=y) Vi) my)[xs; . . Xa)dy

= °+fF(x—y){<My>l;x1:...:xn>—<n>}dy, (4)

wherexevq, ...v, (N=1,2,...) in thenth line of the system,
and 7(y)=M(y) o) (y) + €5(y) is the strain polarization tensor.

daP=dyAs?, A=A(y), 2

whereaP=0 at y=0. The material behaves elasticallyfi 0, or

if f=0 and @f/do):do=<0; elastic-plastic deformations take ) . . 1.
place under a(lctive %oading, when=0 IE;md ©fldo):do>0. By M.(y) is the jump of the complianchl(y)=L(y) * inside the
using the associated flow rule, the yield functibiis taken as Ccore of the inclusion® with respect to the matrix(?). The inte-

plastic potential function from which the incremental plasti@@l operator kernel T(x—y)=—LO[15(x—y)+VVG(x

strains can be derived as —y)L©7, is defined by the Green tengBrof the Lame’ equation
. e of an infinite homogeneous medium with elastic modulus tensor
deP=d\ —, for —:de>0, 3) LO: V{LO[VeG(x) +(VeG(x) /2=~ 85(x), 8(x) is the
Jo Jo Dirac delta function.

In order to simplify the exact syste(d) we now apply the main
hypothesis of many micromechanical methods, called the effec-
tive field hypothesigsee for references and details Buryachenko

2.2 Geometrical Structure of Composites. The paper dis- [29])
cusses a mesodomamwith a characteristic functioklV contain- H1 Each inclusiorv; has an ellipsoidal form and is located in
ing a setX=(V;,X; ,»;), (i=1,2,...) ofcoated ellipsoidal inclu- the field o;(y)=0(X;), (yev;) which is homogeneous over the
sionsv; with characteristic function¥;, centersx; (that forms a inclusionv;, and the perturbation introduced by the inclusiop
Poisson s@f semi-axesaj (j=1,2,3) and aggregate of Eulerat the pointy ¢ v; is defined by the relation
anglesw. It is assumed that the inclusioms have identical me-
chanical and geometrical properties. Each inclusion consists of an f T(y—x)V;(X) p(x)dx=0;T:(y—X) 7, . (5)
elastic ellipsoidal core’Cuv; with semi-axes; (j=1,2,3), char- _
acteristic functionV¥(x), and a thin coating®=v;\v’ bounded by Here 3=(n(X)Vi(x))¢; is an average over the volume of the
a homothetic ellipsoidal surfacev?® with semi-axesaS=aj(1 Inclusionv; ﬂ’“jl“Ot over the ensemble((.))i=(((.))()), and
+8) (j=1230<¢<1) and a characteristic functiow®(x) 11(Y~X)=(i) “JT(y=x)Vi(x)dx, y&u;. .

_ .. . - . - In view of the linearity of the problem there exist constant
=V;(x)—V;; here¢ is the relative thickness of the coating. Thef ) (iK)

. . _0) () 0 ourth and second-rank tens@$’, B, R andCU¥, C, F, respec-
mechanical propertieg(x) =g (g=L,7",h,n) are the same for

0 7 . tively, such that
both the matrixo®@=w\Uv; and the coating)?. The plastic

whered\ is a proportionality factor derived from the condition of
continuous variation of the yield surfacd=0.

strains are constant in the matrix and are an inhomogeneous func- o L

tion along the surfacév?. The volumev? is subdivided along o(x)=BVa;+ kz clikeh®, (6)
dv; into several local volumesv{ (mesvi<mesvy,] -

=1,...n°%, such that the plastic strair$(x), (xevj;) are con- (0);=B(0);+C, v(m);=R{o);+F, (7)
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(xevW), whereCli¥=0 and the tensors, C, B, C%, (j.k (j=0,1,...n°+1) is used. The composite starts to deform plas-
=1,...n%1) are represented in the Appendix. The tend®rs tically, when may?—7)=0 (j=0, ... n°+1) is fulfilled. Up
andF are found by the use of the Eshelby theorBmv;Q *(I  to the moment when yielding starts, the problem of estiméatiig
—B), F=—1,Q IC; the tensorQ is associated with the well- is linear, which allows the use of the relatiof® for calculating

known Eshelby tensd® by S=1-M©Q. the yield surface
Buryachenko and Rammerstorf@4] proved that in the frame- _ i i
work of the effective field hypothesidl1 only the effective pa- f((a))=m_ax\/1.5(B*“>o-°)T:NZ:(B*(”U(O))frgo)zo,

rametersM*, €? governing the overall constitutive relatige) J

=M*(o)+€? as well as statistical average of the local stresses (13)
inside the inclusions have the general representation. In particui@s=0, . .. n°+1). The initial yield surfaces of the components
from Eq. (6) we get (i.e., the individual subdomaing12) may be embedded within

®) each other or they may intersect in the space of macrostrasses
It should be mentioned that special so-called localized models
nc+1 of plasticity of particulate composites have been developed. So
(i) = g* (i) 0 * (jK) oP(k) Herve and Zaoui(1993 proposed a generalization of the elastic
(o) B o ,ZO ¢ B © three-phase spherical modglee e.g. Hashin, 198&owards the
elastoplastic case in the framework of a secant modulus concept.
We will not discuss here in general the known advantages of flow
cxi9  c*xib=p, (j=0,...n°+1) theory over deformation theory of plasticity in the case of nonra-
dial loading, that takes place usually at the local level near the
and inclusions even if the overall stress path is radial. We just look on
B*W=BOR-IYR, (I=1,...n°+1), the method of the calcula_tion of onset of yield_ing_ in_the layer
model by Herveand Zaoui[35], who use the criterior{in our
notations, see the Appendlix

M* =M@+ YRn®D, &P = PO+ YFnD),

where

nt+1

- >, chpx®
=1

1

$O =
B*=cm

V1.56°(9))s:N,:(0°(s))g— 7' =0, (14)

chi

FMICH _} where(a°(9) )4 is the surface average of the streseés) in the

coating over the surface of the case As a consequence of the
properties of the interface operatb(n) this average is given by
<O'C(S)>SiEO'(1) and, therefore, for porous materials one would
Cr=— <@ E cex k., (10)  obtain an infinite overall initial yield stress for pure hydrostatic
k=1 loading 08. More recently a model has been proposed by Bornet
The tensorY is determined by the purely elastic actigmith F et al.[36] which assumes a yield criterion by
=0) of the surrounding inclusions on the separated one. For a
dilute concentration of the inclusions, i.&Y—0, we haveY VLE{(0%)(5):Np:(0%)(9)})g — 74 =0. (15)
— 1. The actual form of the tensof, used in the analysis as an . L ) .
approximation, depends on additional assumptions for closing 'gere (¢°)(s) is a statistical average of the stresses in the point
the infinite system(4). For the purely elastic cas@vith F=0) ~S€S. Obviously the criterion(12) described in this paper
such relations are represented by Buryachenko and Rammersi®r@ generalization of15) and, the yield surfac¢l?) is inside

C*(i'):c(i')_;,_B(i)R*l(Y_|) e

n®+1

fer [34]. the elliptical curve (15 in a dimensionless coordinate sys-
tem X, =09/ 77, Y, =(1.5% ) Y77 | where 63= 6 6%/3, &
EN20'0.

o Zhu and Wend21] used a criterion, equivalent {d2), in that

4 Onset of Yielding approach at each increment of external loading the increment of
Most of the mean field methodseferences can be found, e.g.homogeneous inelastic strains in the matrix was assumed to be the

in the survey papers by Dvoralg] and Buryachenk@28]) use as average of the local inelastic strain increments over the matrix

initial yield condition volume. This, however, would lead to zero increments of inelastic
©)_ (0 ) ) W strains in the case of hydrostatic loading of macroisotropic media.
10=70, 79={150)O:N, (). (11) Instead of the assumptions of mean field methtid$ Bury-

The hypothesig11) is, in the above-mentioned sense, inconsiéflehenko and_ Lipano[25] (for more details see al4@8,29) pro-
osed the criterion

tent. This becomes obvious if we consider a macroscopically is8°
tropic porous material with a matrix which is described by von \/%0 0)_
Mises plasticity. In this case under hydrostatic loading condition LY a:N,: o) =7 =0, (16)
(01j)=(0mw 6;/3, irrespective of the microstructure of the poregyhich is based on the estimation of the second moment of the
and the method of calculation ¢&r)(© (for example, by Eq(9)  stresses in the matrix. For the composite with the isotropic incom-
or any other formulg we obtain thas)®=0, wheres=N,o. pressible matrix containing identical spherical voids, Bury-
This would lead to the condition that the plastically incompressichenko and Rammerstorf¢g7] presented the yield surfaces
ible matrix would never yield under hydrostatic loading, what ig11), (13), and(16) in the dimensionless coordinate syste,

in contradiction with experimental observations. The abover . The yield surface for stress states at the boundary of the voids
mentioned inconsistency can be avoided if the same genefa®) has a nonelliptical form and lies inside the elliptical yield
scheme of mean field methods with subdivisions of the compsurface(16); the solution of linear elastic problef8) and(9) by
nents in separate subdomains are considered. So in our casetfertwo-particle approximation of MEFM was used. The criterions
varied loading onset of yielding appears in the individual subde13) and(16) show that yielding will also take place under purely
main of the coating;ﬁ- or in the remaining matrix(?), respec- hydrostatic loading, which is in contrast to the results for onset of

tively, if the corresponding yield criterion yielding obtained by conventional analysis of composites based
~(_ (©) =) 0 ) on the assumption of homogeneity of the microstress fields in the
=mn’, TV= \/1-5<¢T> ViNy (o), (12)  matrix, Eq.(11). Comparisons of the yield surfaces proposed with
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other known results are considered by Ponte Caskarand Su- P

quet[32] and by Buryachenk{28,29 in more detail. (ﬁ*l)qszw; c*lids(s o—1)
o)l s

ot 9 oFia)
oy 2 P Sqs- (28)

r
5 Elastoplastic Deformation + 5i5021 C* (igin)
=

Now we shall deal with the elastoplastic state, when under suc- | ] ) ) )
cessive external loading elastic-plastic deformations will taKdlastic deformations in the componerts’ take place, if the con-

place for the components, . . . i, dition d\(9)>0 is satisfied together with the local yield criterion
o (17), (18). By this means for a prescribed loading patfi(t),
i afla ) (o) (wheret is a monotonically varying paramejehe system of Eq.
fld’=0, W-d@') ¥>0, a7 (25) becomes a system of six ordinary differential equations for
] ] the determination of all components of the ten$o'f)(‘4). In so
where the indexiy, (q=1,...r) passes through the numbergoing only five from these six equations are independent by virtue
(i1,....d,) of plastically deformed componentsi®, (0<i, of the yield condition(17). After integration of the systeIf25) the
=n°+1j,#1) and where a homogeneous yield criterion insidaveraged plastic strains inside each subdomain are found and the
the volumev (@) is assumed: averaged strains are given Ky)iod=MO(g)ld+gPld, The

) i) i i overall plastic straing} and the total overall strains are defined
fla=7la—Fla(y'e)=0, (18) by the relationse? = 3(B* 1)) TePlcl), (j=0,... n°+1), (&)
Fio) = (1.5 )10 ()10, (19) :qu°+ e . The numerical integration of Eq25) under the
o restriction(18) can be carried out by different integration schemes
By using the associated flow rule, the yield functidiv' is taken analogous to the treatment of homogeneous materials with vertex
as plastic potential function of the matrix from which the increyield surfaces as for example described in Ortiz and PdB8y;
mental plastic strains inside the matrix can be determined as Ray and Utky 39], Nemat-Nasser and Hdr0], and Papadopou-
. los and Taylof41]. The same methodology usually is applied in
dePlia= g (o gt 20 particular versions of mean field methods in the mechanics of
ena= a Ho)d (20) composite materials by Lagoudas et [&2], Dvorak et al.[3],
] and IsupoV{43]. In this work a backward difference method with
At each incremental step of the external stresses homogenegufariable integration step has been used as the integration scheme
plastic strainse('? and increments of hardening parameters afer Eq. (20). An iterative procedure is used, starting with the elas-
assumed within each subdomain. With Ziegler’s i{@ewe obtain tic predictor (27) which provides a first estimate of the stress

(ig increment in the component. This means that at each step an
daPlia=dylidA(s) i), A=— 21) Euler-backward scheme is used in combination with a Newton
Y (£ Fld (i) (21) method, with the initial guess being determined by the elastic

. redictor.
where HUd) is the plastic tangent modulus, derived from thg

uniaxial stress-plastic strain curve of the matrix material, .
6 Numerical Results

) ﬁa(iq) ) i i . . . . .. .
(i) — . (i) = 20”19 dePTa/3 We consider an isotropic composite consisting of a steel matrix
H ayla dy'd 2dg™adet a3, (22) and identical spherical carbidic inclusions with elastoplastic pa-
_ _ _ rameters(v is the Poisson’s ratjo
d73id=(d?)d):(ds?) e, (23) Phase k(GPa v 0(GPa  h(GP3a n
From the requirement of consistency of the plastic deformatianatrix 175 0.3 2.75 15 0.5
process we come up with inclusion 300 025 - -

gflia) . i gt i) o gflia) i At first we consider the case of a dilute concentration of the in-
W-dﬂﬁ O+ g -da +md7 ©=0. (24) clusionsc!?<1. This leads toY=I, see(8), and we have the
possibility to check the quality of our local plasticity model by the
The partial derivatives iri24) are found under the following as- use of finite element analysi§EA). Comparison of the accumu-
sumptions: e”9, (a)Pld=const=1,...r). From (9), (20) lated effective plastic straing(x)/c!) (xev?), calculated by the
and(21), (22) the relations for the differential of average stressgsroposed analytical method with results obtained by finite element
and hardening parameters inside the componéfitcan be de- analysis(FEA), are represented in Fig. 1 for hydrostatic loading
rived as o’= 085. FEA results are presented for two points in the coating
A O vY, near the boundaries with the carg(|x|=a+ 0) and with the
___ )\ matrixv(® (|x|=a(1+ &) —0), respectively; hergis the relative
o)W X o) P thickness of the coating, and three thicknesses are considered in
(25) Fig. 1: ¢£=0.033,¢£=0.1. In the local plasticity theory the subdi-
dylid=dn0),  daPlic)= g (@ A(ytia))(s) 0. 26) vision of the coating{ into one layer of individual subdomains

r

d<0.>(iq>= B*l9dg°— E C* (igio-| )\ ()
k=1

vi; (j=1,...n° is employed by the use of sectiofis- w/n° in
In Eq. (26) d\@=0 anda?(O)/3<a>(0)Eo if the conditions(17)  a spherical coordinate systerd, ,r), the origin of which coin-
are not met for the component?. cides with the center of the inclusion. Hereafter we will restrict
Substitution of the Eq¥25), (26) in (24) leads to the following ©OUr problems to axisymmetric loading and, therefore, the plastic
relation for the proportionality factor: strains in the ribbora<r<a(1l+¢), km/n°<¢<(k+1)m/n°
. o (k=0,...n°=1) can be obtained by the rotation around the axis
(9= gty £ 0 6=0. As we see in Fig. 1 for the considered caseof 11 and
drta & Bqsbs bS_W'B S0 @7 for a sufficiently thin coating §<0.1) the proposed analytical
model provides satisfactory exactness and, as a consequence, from
The elements of the inverse of the mat¢f) are given by here on we will consider the thicknegs=0.1 only. In Fig. 2 the
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Fig. 1 Accumulated effective plastic strains y(x)/cV as a
function of hydrostatic loading 0-8 calculated by FEA (dashed
curve for |x|=a+0, dot-dashed curve for |x|=a(1+£&)—0) and
by the proposed model (solid curve ). (a) £=0.033, (b) £€=0.1

normalized overall plastic straing"=sP /cM) as functions of the
loading 08 are calculated by the use of both the proposed mo
and of FEA. For uniaxial loading, = 03;8,35;3, 03;~t the in-
fluence of the mesh width of the uniform subdivision/(°) of

10
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Fig. 2 Normalized overall plastic strain €35 as a function of
hydrostatic loading 08 calculated for £=0.1 by the proposed

model (12), (17)—(19) (solid curve ) and by FEA (circles )

will use only the solution of the linear elastic probld€B), (9) by

the two-particle approximation of MEFNkee, e.g.[29,34)). Let

us assume uniaxial tensional loadia= 0:3:5,36;3, o35~t. Fig-

ure 4 shows the comparison of the overall plastic straifs,

once calculated by the use of traditional mean field method as-

sumptions(11) and once by the proposed assumpti¢h®). As

can be seen the employment of the proposed critgfi@tends

to decrease the overall initial yield stress of the composite. Fur-

thermore, the concentration of plastic strains in the coating leads

to a “softening” effect of the coated inclusions. This “softening”

results in a redistribution of the stresses from the coated inclusions

to the matrix, which causes an increase of plastic deformations of

the matrix. The limiting case of the “softening” of the inclusions

is the replacement of them by voids, resulting in a significant

increase of the overall plastic straifsich a result is presented in

Fig. 4 by the use of the traditional schertiel), (17)—(19)). For

the qualitative comparison in Fig. 4 the overall plastic strains are

calculated also by a FEA-unit cell model for face-centered-cubic
CO) packing of the inclusions, when the orientation of unit cell

coincides with the global coordinate system. For the considered

the coating on the local values of the von Mises effective plastic

strainsy) (i=2, ... n°+1) (23 is studied; herd is the time,

i.e., a monotonically increasing parameter. The results shown in

Fig. 3 were calculated for both°=11 and forn®=33. In Fig. 3
the valuesy(x) as a function of the polar angle<0§<90 deg are

shown forag3: 2.8 GPa, whereas onset of yielding takes place at
0%=2.2 GPa. As can be seen for the considered case both sub-

divisions of the coatingn®=11 andn®=33) lead to similar re-

sults for the local values of the von Mises effective plastic strains
¥ (i=2,... n°+1) (23). The increase of the degree of subdi-

vision, n°=33, leads to an increase in the calculated vak{¥s

which is however smaller than 0.5 percent. This leads to the con-

clusion that even a crude subdivision®E11) provides good
estimates for the overall plastic straigs". Because of this in the
following we will consider the fixed thicknes§=0.1 and the
fixed degree of subdivision®=11. Let us now study the finite
concentration of carbidic inclusions®=0.25), for which the

4.0

3.0

Equivalent plastic strain [%)]
1.0

1

0.0

40 8
FEA-unit cell analysis is not able to capture real random arrange- Polar angle (Degree)

ments of the inclusions. In this case the effective fighd; # o°

but is defined by particle interaction and by accumulated plastig. 3 Accumulated effective plastic strains ~ y(x) as a function

strains(both in the coating and in the remaining matriwhereas
the solution of the corresponding linear problem can be found
any known methodsee, e.g.[29,40), in the current paper we

Journal of Applied Mechanics

of the polar angle 6, calculated by FEA (dot-dashed curve for
Iw|=a+0, dotted curve for |x|=a(1+£&)—0) and by the pro-
posed model (dashed curve for n€=11, solid curve for n¢=33)
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) ) ) ) o Fig. 6 Overall plastic strain €% 33 as a function of uniaxial cy-
Fig. 40 Overall plastic strain €} 33 as a function of uniaxial load- clic loading o3, calculated for different constant hydrostatic
ing o3 calculated by the proposed model  (12) (solid curve ), by contributions o¥=—4 GPa (solid curve ), 4 GPa (dotted curve );
FEA (dotted curve ) and by the traditional mean field method o> =2 8 GPa, (O)—onset of yielding
(11) (dashed curve ). Overall plastic strain €, 35 for model mate- 8 '
rial with replacement of the inclusions by voids (dot-dashed
curve). . . . . . .
) improved methods utilize the estimations of statistical averages in

each component of either the stress potential or the second mo-
] ) ] ) ment of stresse&l6). Such estimations take into accouint the

small concentration of the inclusions= 0.25) the difference of ayerage sengeéhe measure of stress inhomogeneity in the matrix
the effective elastic moduli for FCC packing and for random agnd can be found by perturbation methods and the method of
rangement should be rather small. As can be seen in Fig. 4 fhgegral equationgsee for references Buryachenjzg]) as well
error of the proposed modeéin comparison with FEAis much a5 py variational methodsee for references Ponte Castda and
smaller than that of the traditional mean field mettiad). This  syuquet[32]). For our elastoplastic analysis in the framework of
significant difference between the use of yield functi¢h® and homogeneity of plastic strains in the matrig=0) we will use
(12) are explained by the possibility of the proposed model to pigke exact perturbation method in combination with the secant con-
up the effect of plastig strain inhomogeneity inside the goati.ngept method by BuryachenK@8] as well as the method of inte-
l.e., .around the inclusions. Let us now compare the estimatio &l equations in combination with flow themsee for references
obtained by the proposed model and by other popular methoggryachenko[29]). The corresponding curves 2 and 3, respec-
There are different versions of mean field methods employingely, are presented in Fig. 5. Finally, the proposed local plasticity
flow theory (Dvorak [2]) and secant concept methde.g., Qiu  model takes into account the inhomogeneity of plastic strains in
and Weng[26]). In Fig. 5 the curves 4 and 5 are calculated in th§ome matrix layer around the inclusions=(0.1) as well as the
framework of mean field methodll) (at £=0) by the secant inhomogeneity of the first-order moment of the stresses in the
concept method and by the flow theory, respectively. Modifieghating (curve 1. As can be seen from Fig. 5 the mean field

method approaclicurves 4 and Byields predictions which are

stiffer than the predictions of the modified approdctirves 2 and

I . L . L . Iy 3). Secant concept modéturves 2 and ¥seems softer by com-

parison with flow theory(curves 3 and Bboth for classical and
for modified methods, based on the first-order moments and
second-order moments of the stresses in each individual phase,
respectively. The known question regarding the correctness of the
secant concept model is not discussed here. It is just mentioned
that even for radial external loading the stress path at the local
level is not a radial one. At the same time in the considered case
(023: 3 GPa) the modified secant approdchrve 2 predicts val-
ues of the overall plastic straia® .5 which are considerably
smaller than those calculated by the use of both FEA-unit cell
model and the local model of plasticity for random packing of the
inclusions(curve 1. As can be seen in Fig. 5 the better discreti-
zation of the stress-plastic strain state in the proposed model
(curve ] leads to significantly improved predictions of the overall

Proposed
model

0.8

Overall plastic strain £f;; [%]
0.4

o}
S T plastic straingat least with respect to the comparison of the pre-
25 . 27 0 sented estimations for random structure composites with the FEA-
Axial stress ¢, (GPa) unit cell mode).
As a further example we consider a cyclic external loading,
Fig.5 Overall plastic strain € 53 as a function of uniaxial load- described  ¢°= o'+ ¢+ (¢™"— 0™ ))(t—1)[H(t—1)—H(1
ing o3 calculated by the proposed model  (12) (solid curve 1 ),  —t)], which is a combination of a constant hydrostatic loading
by a modified approach based on the the estimations of second o*=4fXs. and a uniaxial cyclic stress with zero mean-stress
moment of stresses (dotted curve 2—secant concept method, N 0 = e ammax . max. in_max._ _max )
dot-dashed curve 3—flow theory ), and by mean field method and an amplitudeo®"= 033", o™ __oj_n il =033 Sadjs;
(dashed curve 4—secant concept method, dot-dashed curve hereH is the Heaviside step function amnds the time. From Fig.
5—flow theory ) 6 we see that the overall plastic strain componehy; after the
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first cycle (with o32*=2.8 GPa converges to a steady-state re=L(?(n®n), n is the unit outward normal vector a8l in the
sponse(or steady cyclk i.e., a closed loop is received. From Figpointse s/, s' is the outer surface of the boundaty? .
6 we see a significant role of the hydrostatic loading which leads| ¢t the volumev¢ be subdivided into one layer of individual

to a considerable variation of the closed loop of the overall plastj c c c i

strains(plastic shakedown |t should be menti%ned that the uge 0?80&|.V0|UIT!€SU”- (mesv”f mesvi’.] =10, such that the
the criterion(11) tends to an overprediction of the initial yield PlaStic stramcep(x) and o*(x) (xeuvjj) are constant inside each
stress of the compositegg§:2.92 GPa instead Ofggg subdomalr_lvij_. .For gxample |n_a spherlpal coo_ro_llr_1ates system
=2.34 GPa obtained by the proposed method, and to indepé#-¢.") coinciding with the semi-axea; this subdivision can be
dence of plastic deformations on hydrostatical loadiag* done by the use of cutting the coating along surfacesy

=gl*6. Therefore, in the considered range of external loading CONst,¢=const. Estimations for the tensors in E(S). and(7)

oT<2 92 GPa by usingl1) the composite material would de- 2" be obtained

form elastically, and foro3s*>2.92 GPa after the first cycle of BU=(1+QM®) "L, BO=[1+T(n)MP1BY,
elastoplastic deformation the process would result in elastic
shakedown. 7.

C(ll):,B(l)Q

vj) vil (1)
51|+F(1751I) +?(1751|)B F(Xifyil):
7 Concluding Remarks

CM=[1+T(nyMPIC+T(ny) (8= S,
Let us discuss the main hypotheses as well as the limitations of [ (Nm)M371 (M) (021~ &)

the proposed estimations and their possible generalizations. The n°+1 7S

possible constitutive relations are not limited to the von Mises B=—m 2 cBO =1+ Z(BY—),

yield criterion (1) assumed in this study, and modification of the 1—cf j=1 Ui

present method to accommodate general yield criteria and general .

hardening laws can be performed. It is only important that re- 1 & i (k)

sponse of a “coated” inclusion is defined by the E(®.and(7), C= 1——(:“’)2 ccight,

notwithstanding the inclusion can be considered as some sort of a k=1

“black box.” The local model proposed can be applied to a widgsherel, m=2, ... n°+1; x, andy, are the centers of the do-

class of nonlinear problems for which the local properties of tnﬁainsm and v$, respectively;n, is the unit outward normal
components become location-dependent: nonlinear elasticity tor ons' in tr|1e pointy;
il -

conductivity, viscosity and creeping, and viscoplasticity. More-
over, the model proposed can be generalized easily to any number
of thin coating layers of nonellipsoidal inclusiorisee Bury-
achenko and Rammerstorfed4]). The next step of the improve- References
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e rane | Stress Distribution in Porous
b " eng n ] n n

s..e | Geramic Bodies During Binder
Department of Mechanical B u rn 0 ut

and Aerospace Engineering,

University of Missouri—Columbia, . . . .
Columbia, MO 65211 A model has been developed for describing the stresses that arise during binder burnout

in three-dimensional porous bodies. The pressure gradient that arises from the decompo-
sition of binder in the pore space is treated as an equivalent body force. For input into the

S. J. Lombardo mechanics model, the pressure distribution is obtained from the analytical solution for
Department of Chemical Engineering, three-dimensional porous bodies with anisotropic permeability. The normal and shear
University of Missouri—Columbia, stresses are then calculated from finite element analysis for bodies of parallelepiped
Columbia, MO 65211 geometry. In general, the normal stresses occur at the center of the body and are an order

of magnitude larger than the shear stresses. Both the normal and shear stresses depend on
the body size, the body geometry, and on the permealjidi@!: 10.1115/1.1460908

1 Introduction librium equations, were considered to consist of contributions

s . from the gas phase and the solid phaskeleton by an equal
In the fabrication of ceramic components by powder process%?mum_ An isotropic constitutive law was used for the stress-

routes, the strength Of. formed bodies is often enhanced by Fain relationship for the skeleton and the void fraction does not
addition of polymeric binderg[1)). These polymers are then re- ear explicitly in the stress formulation. This pair of models

moved in Iatqr processing steps by decomposing them at elev e as their starting point that the local pressure and the local
temperature into gas-phase products. Two types of mdfieis s{ress are linearly additive quantities.

20]) have appeared fc_)r descf'b'”g how the degrad_atlon prc_)duc Sn this paper, we propose a general three-dimensional model for
exit the body. For bodies having large volume fractions of bindgp, qyresses caused by the buildup of internal pressure in a ceramic
and thus low initial porosity, diffusion of the decomposition prOdbody during binder removal. Instead of calculating average
ucts through the remaining binder in the nearly filled space h@g.sses in porous media as is conventionally d6@a]), we

been treated as the rate-limiting st¢@—11). For bodies pre- model the ceramic body as a solid skeleton permeated by a gas-

Eared with lower voluhme_fractzior;s of bint()jerr,] gas-phalfe flow is thet s phase whose pressure follows a known distribution. We first
aster transport mechanistfl2—-20). In both cases, however, aerive the equilibrium equations for the stresses on the skeleton

distribution of pressure arises within the pore space of the bodyny ;se an isotropic constitutive law. The gradient of the internal
Depending on the processing parameters and the size of pressure is shown to be responsible for the stresses, and we
component, the pressure increase inside the ceramic body du elop a model formulation in which the pressure gradient is
binder burnout can be so large as to decrease the product yiglthieq as an “equivalent body force.” Numerical methods are
([7,19,21). In Liau et al.[19], it was demonstrated that the yieldihen ysed to solve for the stress distribution in rectangular paral-

depended on the heating cycle and on the dimensions of SqUaggspineds, a common geometry of ceramic capacitors.
parallelepiped multilayer ceramic capacitokéLCs). The authors

also noted that the flow of the gas-phase decomposition products

in the MLCs was enhanced in the direction parallel to the plan@ The Mechanics Model

containing the metal electrodes, which suggests that the perme;, : : ;
ability is anisotropic within the body. To describe these observ%ggil_make the following assumptions in the development of the
tions, an analytical modd[20]) has been developed for describ- ’

ing the pressure distribution during binder burnout in three- *The porous ceramic during the burnout process consists of a
dimensional porous ceramic bodies with anisotropic permeabilityoid fraction,e, and a solid skeleton fraction, &l.-

Although the pressure is known to increase within the body *The void space is occupied by gas of internal presspre,
during binder burnout, the mechanical stresses arising during tHiich varies continuously in the pore space of the body. The gas
process are ultimately what cause the ceramic component to f@ilase cannot support shear stresses and both viscous and inertial
When the pressure distribution is known, the distribution citresses accompanying fluid flow are neglected. .
stresses can be calculated by adopting mechanical models for therhe solid skeleton can be modeled as an isotropic linear-elastic
ceramic body. Stangle and AksBl4] used the stress formulation solid.
developed for partially saturated granular me@22]) to calculate  |n Fig. 1, we show a free-body diagram of a two-dimensional

the stress distribution in spherical bodies. They considered bgiffinitesimal volume. Force and moment equilibrium leads to the
capillary stresses due to liquid-phase binders and stresses dugfigwing equations:

the increase in pressure arising from binder degradation products.

Tsai[15] considered binder burnout in axisymmetric porous bod- (1-¢) aa’xx+ Ioxy| _ 9P )
ies. Both the radial and tangential stresses, which satisfy the equi- N Tox ay & 9x
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Fig. 1 Free-body diagram of an infinitesimal two-dimensional
element showing the solid skeleton  (hatched ) and the continu-
ous porous network. The shear stresses are denoted by the
dashed arrows.

left-hand side of Eqs(1) and(2) arises because only the skeletaﬁ{
part of the body bears the stress. The occurrence of a pressy
gradient is thus equivalent to a body force throughout the Copy,

tinuum.

The stresses are often defined as the force per unit area withﬁ?éﬁ

subtracting the nonload bearing voids. These nominal stresses
are smaller than the true stresses as given by

®)

wherei andj correspond tax andy. In terms of the nominal
stresses, the equilibrium equations become

’5'”:(178)0'”

0y N 9Ty _ P

ax gy Cox “)
doyy oy, 9p
ax ay oy ®)

doy, doy, Jo,, P
=g—. (8)
Ix ay 9z 9z

To complete the description of the problem, the skeleton is as-
sumed to follow isotropic elastic constitutive lawi24]) with
Young's modulus,E, and the Poisson’s ratia;. An alternative
approach([25]) leading to the identical model is to use the theory
of interacting continua as proposed by Green and Nadt&liand
applied by Ortiz[27].

The relationship between the internal pressure and stress distri-
butions described by Eq&)—(8) can be clarified for the follow-
ing special case. We consider two-dimensional problé¢pfesne
stress or plane straimvith body forces derivable from the gradient
of a potential, which is the pressure in our case. The Airy stress
function, ®, can then be invoked by lettin24]):

P _ PPD
Ty axay

Fa)

ax?

T =ep+ FYR Eyy=sp+ 9)
The Airy stress function is then determined from solution to the

nonhomogeneous biharmonic equation

P Irb PP ’p  °p
ax* T oxPay? * ay* _D( ax? " ay?
here the constarld depends on whether the problem is plane
ress or plane strain. The plane-stress and plane-strain results can
generalized to sheet-like geometrilength in one direction is

ch smaller than the other tyor rod-like geometrieflength in
direction is much larger than the otheklthough numerical
hods are required even to solve fbrwith these geometries,
great simplification for two-dimensional problems can be
achieved if the internal pressure satisfies the Laplace equation.
Under these circumstances, the right-hand side of (EQ). be-
comes zero, and the biharmonic equation is thus homogeneous. If
we further assume that no external loads are applied on the ce-
ramic body,®=0 is a solution which satisfies both the biharmonic
equation and the boundary conditions. By uniqueness, we con-
clude that®=0 everywhere within the body and thus the stresses
inside the body are isotropic tensors and are proportional to the
internal pressure as given by E®). This conclusion only holds

for the two-dimensional case. In summary, stresses and internal
pressures are related through differential equations; only in rare

2
(10)

Note that the nominal stresses differ from the true stresses byiecumstances are they related by simple algebraic relations.

constant factor, which is only dependent on the void fraction.
The equilibrium equations in two dimensions can be gener
ized into three dimensions as

F0yx N aZer+ 90z _ P

ax oy | ez Cox ©6)
Jo Jo. do J
Xy yy vz _ P %
x oy | oz ay

a;‘)f- Stresses in Rectangular Parallelepipeds

To calculate the stresses in a three-dimensional ceramic body,
we first need to know how the internal pressure varies with posi-
tion. The starting point is to use Darcy’s law for flow in porous
media([28]) when a source term is present. Applying conserva-
tion of mass then leads to a partial differential equation, the solu-
tion ([20]) to which describes the pressure distribution in a paral-
lelepiped of dimensionk,, L, andL,, as

i=135... j=135..

for —L/2<x<L,/2, —L2<y<L/2, —LJ2<z<L,I2, where
Py is the ambient pressure surrounding the porous body, and

2)5

1
ijK[i2+ (j/W)2+ (k/H)?]

i+j+k-3
2

(-1

ks

Aijk: 80(
(12)

i
Aijk CO<
. k=135...

kmz
L,

X

s

L

]

Ly

(11)

o4 T

which are defined in terms of the permeability in different direc-
tions, xy, «y,, andk,, are the effective dimensionless width and
height of the body:

N
Ky Ly Ky Ly

After determining the pressure distribution from E@.1), we

(13)

The source tern€ in Eqg. (12) is dependent on the reaction ratecompute the three components of the body forces appearing in

the length scale of the body and the permeabilityWw, andH,
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These body forces are then distributed equally among all nodes . ,
a commercial finite element analysis program, Algor. For “brick’ T R
elements in Algor, the body forces of each element are th 01 1 10
equally distributed among the eight nodes in each element. F L /Ly
stress calculations in a rectangular parallelepiped with overall di- ~ _
mensions 2 c4 cmx1 cm, we use 125 “brick” elements to Fig. 3 The dependence of the maximum stresses o and o,
represent one-eighth of the body. The product of the void fractigffth aspect ratio for a square parallepiped body of fixed vol-
and ambient pressure is takensR,=10° N/m?; because of the Ume_V=8cm" with (2) equal permeability of  w=s,=x;
linear elasticity assumption, the stresses are proportion®to — 19~ *m’ and (b) unequal permeability of  x,=#x,=10"", &,
The void fraction, e, is therefore left to be arbitrary, and the=1077m
stresses that are calculated by finite element analysis are thus the
nominal stresses which afé—e) times the true stresses on the
skeleton. The nominal stresses presented here are due to the preSquations(11) and (12) describe the dependence of the pres-
sure gradient alone. For the skeleton material, we use the sagge distribution on the consta@t which is related to the rate of
material properties as Tsdil5: \=116.8<10° N/m* and G reaction of binder decomposition, the length scale, and the perme-
=77.9x10° N/m? which corresponds to Poisson’s ratie=0.3 ability. As a result of Eqs(6)—(8), the stresses are also dependent
and Young's modulug&=2x10" N/m?. on C. Figure 2 shows that the maximum normal stress in-

The stress componenisy, ayy, 0,,, ando,, are calculated creases withC for bodies of isotropic permeability for different
for a rectangular parallelepiped of overall dimensions of 2@m values ofW andH. In our previous work20], we have found that
cmx1 cm for C=100 with equal permeabilityfv=2, H=0.5) in  the maximum internal pressure is mainly controlled by the flow of
all directions. The maximum pressure in the center of the body decomposition products across the smallest length of the body; the
3.55x 10° N/m? as determined by Eq11). Corresponding to this differences in pressure for the top three cases listed in Fig. 2 are
pressure, we find that the maximum normal stressgs }yy, small s_ince the shc_)rte_st_l_ength of these_z cases is the same. We see
and@,, are 8.5< 10° N/m?, 8x 10° N/m?, and 9.9< 10° N/m?, re-  from Fig. 2 that this limiting behavior is true for the maximum
spectively, and these maxima all occur at the center of the body¥mal stressr,, as well. ) . . .
well. The three components of normal stress all decrease monoln order to investigate the differences in maximum stress in
tonically in a nonlinear manner as the edges of the body are 4tpdies with anisotropic permeability, we have examined the fol-
proached. The occurrence of the maximum stress in the centel@¥ing two cases:(a) ky=ky=r,=10""°m? and (b) x,=«,
the body agrees with the commonly observed failure mode in thatl0 *°, «,=10"**m?. The normal stresses are calculated for
the ceramic parts fracture along surfaces of symmetry correspobddies of identical volumeV=8 cn? with L,= Ly, and L,
ing to the normal stresses in tkeandy-directions. B =8 cnP/L2. We also letC=25cm 2L2 to correctly account for
B For the~case treated above, the maximum shear stresses its dependence on the length scgl20)). Figures 8a) and 3b)
yz, and o, are 0.3%10°N/m?, 0.39<10°N/m?, and 0.50 show the maximum normal stresses, and sidgg= oy, for
X 10° N/m?, respectively, and do not occur at the center of thequare parallelepipeds, orfig, ando,, are shown. From Fig. 3,
body. We note, in particular, that the maximum shear stresses ae see that in each case, the difference between the two normal
at least an order of magnitude smaller than the maximum nornsdtess components is small. In ca@, the maximum normal
stresses. Calculations on rectangular parallelepipeds with otl&ess occurs dt,/L,=1, i.e., the body with cubic geometry. In
aspect ratios lead to the same general observation. For this reasasg(b), the maximum normal stress occurslgt/L, near 0.3.
our computational results will be given primarily in terms of théVhen the different permeability is taken into account in calculat-
three normal stress componeitg,, oy, , ando,. ing the “effective” aspect ratidH by Eq. (12), however, we find
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that the maximum normal stress occurddat 1. The fact that the 3
stresses vary witl.,/L, should not be surprising since we are §
considering parallelepipeds with fixed volume; bodies with eitheu‘g T
small or large aspect ratios will have one short length scale bg 1 ¢
which the pressure is relieved, thereby lowering the stress. 2 I
The maximum internal pressure corresponding to cémesnd 1
(b) are shown in Fig. 4. We see that maximum pressure varie 0 e i

with aspect ratio in manner which is very similar to how the 0.1 1 10

stresses in Fig. 3 vary with aspect ratio and permeability. Not L/L,

especially that the maximum internal pressure occurk dt ,

near 0.3 (1=1) for the case of anisotropic permeability. Fig. 5 The dependence of the maximum mean pressure with
The normal stresses shown in FigiaBindicate thato,, is aspect ratio for a square parallepiped body of fixed volume v

greater tharo,, for L,<L, and this ordering is reversed ftr, =8cm? with (a) equal permeability of x,=x,=K,=1071>m?
>L,. In other words, the normal stress corresponding to tmead (b) unequal permeability of  x,=#x,=10715 k,=107' m?
shorter length is larger than the normal stress corresponding to the

longer length. To understand this particular ordering of the normal

stresses, we calculate on the three symmetric planes of the body

the mean pressures, which are defined as

Conclusions
w4 Lyl2 (L2 We have developed a mechanics model that allows us to calcu-
P p(x=0y,z)dydz (15) late the stress distribution in porous three-dimensional bodies
y=z Jo 0

based on a known internal pressure distribution. This model, when
combined with finite element analysis, allows us to study the
m 4 b2 (L2 —07)dxd 16 stress distribution in ceramic components during binder burnout.
Py T L, o o p(x,y=02z)dxdz (16) This combined approach thus allows one to design bodies based
on consideration of the effect of mechanical stresses on product

4 (L2 (L2 yield. _ )
przn:L - J’ f p(X,y,z=0)dxdy. (17) For the simple geometry we have considered, the normal
xty Jo 0 stresses, which occur at the center of the body, are an order of
magnitude larger than the shear stresses. In general, the normal
Figure 5a) corresponds to casé) of isotropic permeability, stresses follow the same trends as the internal pressure. This is
where we see that the ordering of the mean pressures is the sasgecially so for bodies with isotropic permeability. Therefore,
as that of the normal stresses. Thus, for bodies of isotropic pérstead of carrying out stress calculations, which require numeri-
meability, the maximum normal stress and mean pressure both e&l solution, the internal pressure, for which an analytical solution
along the shortest direction. exists, can often be used for development of the binder burnout
For casgb) of anisotropic permeability, the mean pressures agycle and for product design.
plotted in Fig. %b), where we see that the two curves cross each During the binder burnout process, very little is known about
other atL,/L, near 0.3 H=1). That is, the maximum mean how the material properties such as the Young’s modulus and
pressure occurs along the shortest direction if the lengths are Bdisson'’s ratio vary spatially and temporally. In addition, the fail-
justed by the permeability following Eq13). Comparing Fig. ure criteria have not been identified. In light of these limitations,
5(b) with Fig. 3(b), we find that the same cannot be said about ttee mean pressure on different material surfaces can be used as a
normal stresses; the two curves in Figh)cross each other when convenient compromise between the full finite element stress cal-
L,/L, is near one. In summary, the maximum normal stress ardlations and the internal pressure calculations. Although the
maximum mean pressure occur where the effective aspectHatianean pressure is calculated solely from the internal pressure, it
is unity; the aspect ratio at which the ordering of the stresmptures the effect that geometry plays on the distribution of the
changes, however, occurs at the true aspect kgtib, of unity.  internal load within the body.
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e-mail: paulino@uiuc.edu Graded finite elements are presented within the framework of a generalized isoparametric

formulation. Such elements possess a spatially varying material property field, e.g.
Young’s modulus(E) and Poisson’s ratio(v) for isotropic materials; and principal
Young's moduli(Eqq,Ey,), in-plane shear modulugG,,), and Poisson’s ratio(v,,) for
orthotropic materials. To investigate the influence of material property variation, both
exponentially and linearly graded materials are considered and compared. Several
boundary value problems involving continuously nonhomogeneous isotropic and ortho-
tropic materials are solved, and the performance of graded elements is compared to that
of conventional homogeneous elements with reference to analytical solutions. Such solu-
tions are obtained for an orthotropic plate of infinite length and finite width subjected to
various loading conditions. The corresponding solutions for an isotropic plate are ob-
tained from those for the orthotropic plate. In general, graded finite elements provide
more accurate local stress than conventional homogeneous elements, however, such may
not be the case for four-node quadrilateral (Q4) elements. The framework described here
can serve as the basis for further investigations such as thermal and dynamic problems in
functionally graded materials.[DOI: 10.1115/1.1467094
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1 Introduction ments obtained with this formulation are compared with conven-
'gpal homogeneous elements, as illustrated by Fig. 1. Notice that

Recent advances in material processing have allowed manuf . . :
turing a wide diversity of functionally graded materidBGMs) e graded element incorporates the material property gradient at
([1-3]). Such materials possess continuously graded propertfgg size scale of the element, while the homogeneous element

with gradual change in microstructufg4,5]). The materials are produces a stepwise constant approximation to a continuous ma-
made to take advantage of desirable features of its constitu«t-:%rt'l_al.pmperty f.'eld such as the one shown in F'g: 1

phases. For instance, in a thermal protection system, FGMs tak% hé%ﬁ?gﬁtriodr:?fuhsgﬁ% agge%%rgp;reeriégg bf:;evr'o\;ﬂogﬁdlgg d\?ﬁr'
advantage of heat and corrosion resistance typical of Ceram@%hditions in both isotrogic and orthotropic FGMs with respect to ?
angGmN(lasc r;?gl%ac:nskfgiqg;ir?ggutscjl\j\%thhn?:; ;?/(? Ifoaltr?; rm%trilgéh ani& alytical solutions which are either available in the literature or
and strength related properties. Depending on the processing te %r_lvedbm th'.s work. The manuscrlplt IS (;]r_gﬁnlzed as fOHOWS'.Th.e
nique, they may exhibit either isotropic or anisotropic materi Ext subsection presents an example which serves as a motivation
prope’rties For instance, large bulk FGMs produced by sp this work. In this example, the FGM leads to a stress redistri-
plasma siﬁtering{SPS teéhnique may be modeled as isotropi ution with lower stress concentration fact@CH than the cor-

materials ((6]). On the other hand, materials processed usirﬁSponding problem with homogeneou; material. Next, a brief lit-
' ’ ature survey and comments on previous related work are given.

plasma spray technique have generally a lamellar strucfdie . . :
while materials processed by electron beam physical vapor de@ﬁ_ctlon 2 presents some exact solutions for displacements and

> ; i thotropic FGMs. The exact solutions for isotropic
sition (PVD) may have a columnar structuffe]). Thus, in study- esses in ortr X . .
ing the mechanics of the former class of materi@bricated by FGMs are obtained as particular instances of those for orthotropic

SPS, a nonhomogeneous isotropic model may be appropria eGMs. Section 3 reviews finite element formulations. Section 4

and for the latter class of materiafabricated by plasma spraying addre_sses the _generalized isoparametric_: graded finite element for-
or PVD), a nonhomogeneous orthotropic model may suffice as ulation. Sections 5 and 6 present finite element results for

first approximation. Thus, both types of material models, i.e., isG€SS€S in isotropic and orthotropic FGMSs, respectively, which
tropic and orthotropic, are investigated here. are compared with analytical solutions. Finally, Section 7 provides

As the manufacturing of FGMs advances, new modeling tecFoMe concluding remarks.
niques are also developed for such materig89]). Here, we 1.1 Motivation. Functionally graded composites, with
focus on the finite element method for nonhomogeneous materigiiooth variation of volume fractions, offer various advantages
using a generalized isoparametric formulation. The graded elgich as reduction of residual streg$0]) and increased bonding
strength([11]). Moreover, if properly used, such materials may
1CTO ‘{V'ZOT g%rre;pogdelhcg fﬂhmﬁ'd be %ddressedﬁEA © also lead to reduction of stress concentration or stress intensity
ontripute: y the Applie echanics Division O MERICAN CIETY OF
MECHANICAL ENGINEERS for publication in the ®URNAL OF APPLIED MECHAN- factors ([12]). For (_example, Hasselman and Youngblc_m@ﬂB])
ICS. Manuscript received by the ASME Applied Mechanics Division, July 2, 2001?0[“"Id that the maX'm“m .tenS”e therma[ stresseg in brittle ceram-
final revision Nov. 14, 2001. Associate Editor: M.-J. Pindera. Discussion on the papes can be reduced significantly by spatially varying thermal con-
should be addressed to the Editor, Professor Lewis T. Wheeler, Department of Niictivity in a hollow circular cylinder subjected to radially inward

chanical Engineering, University of Houston, Houston, TX 77204-4792, a _ ﬁﬂiﬂ
will be accepted until four months after final publication of the paper itself i?]gr outward Steady state heat flow, and Horgan and C( )

the THE AMERICAN SOCIETY OF MECHANICAL ENGINEERSJOURNAL oF AppLiep  INvestigated the effect of material nonhomogeneity on the re-
MECHANICS. sponse of linearly elastic isotropic hollow circular cylinders or
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X mogeneity which are given by

1 1
,BEzwlog(ETiB/ETi)v BV:V_V|09(VTiB/VTi)v )

respectively, wheraV is the width of the symmetric model as
shown in Fig. 2b). Figure 3a) shows the finite element mesh for
the symmetric portion of the link bar with 1000 quadrilateral el-
by © ements of eight node®8). These elements are graded finite el-
ements as illustrated by Fig. 1 and explained subsequently in this
erty variation along one coordinate axis; (b) homogeneous el- paper. I_:lgure G?) shov_vs theo, stre_ss contour for the homoge-
ements; (c) graded elements. Notice that the property of the neous link baxeither TiB or T) and Fig. 3c) shows ther,, stress
homogeneous element corresponds to the property at the cen- contour for the FGM link bar(TiB/Ti). The main stress values
troid of the graded element. (nodal averageare summarized in Table 1. Notice that the maxi-
mum stress location in the FGM bar is different from that in the
) ) ) ~homogeneous bar—the maximum stress occurd\'insee Fig.
disks under unlforn_‘l internal or externa] pressure by varying(p)) for the homogeneous bar, while it occurs B (see Fig.
Young’s modulus with respect to the radial direction and foungb)) for the FGM bar. Moreover, the maximum stress is lower in
that the maXimum hOOp stress in a nonhomogeneous material dﬂ@ FGM ’[han in the homogeneous bar. Thus’ the FGM |eads to
not, in general, occur on the inner surface in contrast with a hgyress redistribution with a lower SCF as illustrated by Table 1 and
mogeneous material. ) ) ) . Fig. 3. In summary, this example shows, by means of elastic finite
To further motivate the use of FGMs in engineering applicasiement analysis, thathe stress response of (inhomogeneous)

tions, consider the isotropic FGM link bar of Figia2. The bar FGMs differ substantially from those of their homogeneous
has unit thickness, it is subjected to unit axial tension load at tRgunterparts

right end, and it is considered in a state of generalized plane

Fig. 1 Homogeneous versus graded finite elements. (a) Prop-

stress. The basic FGM constituents are titanium monobdfida 1.2 Related Numerical Work. —Several numerical models
and commercially pure titaniuCP Ti) as illustrated by Fig. (). have been used to investigate FGMs, including integral equations
The elastic properties of the base materials (B8]) (e.g.,[16-18), the higher order modek.g.,[19,20), boundary
elements(e.g., [21,22)), and finite elementge.g., [10,23-30).
Etig=375 GPa, v1ig=0.14 This work concentrates on the finite element method for FGMs
using the isoparametric concept for graded elements.
E;;=107 GPa, v1;=0.34. A few additional comments about the related work by Santare

The graded region is incorporated with an exponential materi %?n;?rgbrf;a[:g]zﬁig geor;%?\rt' ;2?{;?%‘;%3?&%:5":qulggu'g :Elaie-
variation. Thus Young’s modulus and Poisson’s ratio are functiorlw:sI H 9 hei K differs f in th 9 hat th
of the Cartesian coordinage(see Fig. 2, i.e rals. However, their work differs from ours in the sense that they
B sample the material properties directly at the Gauss points of the
E(y)=Eefe, =y B, 1 element, while we adopt a genergllzed isoparametric fqrmulatlon.
(¥)=En v(y)=r @ Although the two methods are different, they are equivalent for

respectively, where B and 13, are the length scales of nonho-fine mesh discretization§31]). They investigated the behavior of

Y

O1O1¢
Q
]
5
I

X (R — | X
il & o/ — |
: R=35
21
26.25
42
(a)
- FGM
: —
(@) [

(b)

Fig. 2 FGM link bar (units: N, mm ): (a) geometry and boundary conditions;  (b)
symmetric model

Journal of Applied Mechanics JULY 2002, Vol. 69 / 503



(a)

= 2908

_~
2495

- -

1650

{b} 1.270

B605

q AS510
- - JAMS
‘ = 3GR0

{c)

Fig. 3 FGM link bar under unit axial tension (units: N /mm?): (a) mesh con-
figuration with 1000 graded Q8 elements;  (b) o, stress distributions for ho-
mogeneous link bar  (both TiB and Ti ); (¢) o, stress distributions for FGM bar
(TiB/Ti)

Table 1 Representative o, stress values (N/mm?) for the link y
bar of Figs. 2 and 3 T
1 o(x) G, G,
Location ~
. 114 L,:
Oxx A B’ Isotropic
Homogeneous 2.908 2.137 L
FGM 2.369 2.601 Ex) P

v

four-node quadrilateral®4) for isotropic FGMs only. In addition  Orthotropic
to the bilinear elementQ4), we also investigate the behavior of E L
eight-node quadrilateralg8) for both isotropic and orthotropic 1(%) — =0
FGMs. They investigated exponential material variation only. £,,(x) 2
Here, we compare both exponential and linear material variations G,,(x)
Finally, we believe that the generalized isoparametric formulatior

is more natural to the finite element method than the Gauss poir Vi —J T 71
sampling of material properties because the generalized formule Ig;

tion embraces the important isoparametric concept—the sam S~ 7
shape functions are used to interpolate the unknown displace (a) (b) (© (d)

ments, the geometry, and the material parameters.
Fig. 4 An isotropic or orthotropic functionally graded plate:

: (a) geometry and material properties—the shaded portion indi-
2 Sf)me Exact Solutions for Nonhomogeneous cates the symmetric region of the plate used in this analysis;
Elasticity (b) fixed grip loading with a schematic of the corresponding

Exact solutions for both isotropic and orthotropic functionallPresses at the end points of the plate;  (c) tension loading; ()
graded material$FGMs) will be used as reference solutions fo ending loading
the numerical examples that follow. We consider athotropic
functionally graded plate of infinite length and finite width sub-
jected to various loading conditions such as remote fixed gri
tension, and bending, as shown in Fig. 4. Both exponential ajile 5y graded isotropic and orthotropic FGMs are new solutions
linear material variations are considered. First, analytical S°|Ut'08§rived in this work.
for stresses and displacements are developed for orthotropic
FGMs and, afterwards, they are particulariZedy., in the limij 2.1 Exponential Material Variation. Consider a plate un-
for isotropic FGMs. The analytical solutions for exponentiallyder generalized plane stress conditidsse Fig. 4 made of a
graded isotropic FGMs coincide with those of Erdogan and Waonhomogeneous orthotropic material. Assume the Poisson'’s ratio

2]) and Paulino and Kin{[33]). The analytical solutions for

504 / Vol. 69, JULY 2002 Transactions of the ASME



(v12) constant, and the Young's moduli and in-plane shear modu- U(0,0=0, uy(x,0=0, (8)
lus with variations given by the following expressions:

one obtains the displacements
Ep(x)= E(l)leﬁnx

Ey 1
= EQ gB2x Ug(X,Y) = — vypg0— ————[efz FrIX— 1
Ezz(x) Ezze (3) X( y) 12€0 Egl ﬁ22_ ﬂll[ ] (9)
GqH(X :GO eﬂlzx
12X =Gz Uy(X,Y)=&oY.
v1(X) = constant, Notice that for isotropic materialsE(=E;=E,, G1,=G, and
whereE$,=E,(0), ES,=E,»(0), andG%,= G,,(0) are the mate- ¥12= v), the stress distributiofi7) becomeg[32])
rial properties at the=0 line (see Fig. 4a)), and the coefficients Tyy(X) = E% e (10)
Bi; above are independent nonhomogeneity parameters character- ) . ) o
ized by and the displacements are obtained in the limit of ER). as
(B2o— B11)—0. Thus([33])
—i|o w u (X ): — X
Bllfw 9 Ell(o) x( XY veg (11)
1 [ExW) Uy(X,Y) = &oy.
522:W|09 Ezz(o)} 4) 2.1.2 Tension and Bending. For tension and bending loads
(see Figs. &) and 4d), respectively, the applied stresses are
1 [Gp(W) defined by
B1o=l09 = |
W % G14(0) oy W2
whereW is the width of the FGM plate as shown in Fig. 4. Notice N=oW, M=—g—, (12)

that in this case thg;; parameters have unifsengti %,

For a corresponding nonhomogeneous isotropic mateEal
=E1=E,,, G=G;,, v1o,=v), the Poisson’s ratio is assume
constant and the Young's modulus varies exponentially, i.e.,

E(x)=E%#*

hereN is a membrane resultant along the W/2 line (see Fig.

(a)), andM is the bending moment. For these two loading cases,
the compatibility conditions®e,,/9x*=0 givese,,=Ax+B and
thus

(5) 0yy(X) = E3eP22(Ax+B) (13)

where the constanta (with unit [Lengti %) andB (dimension-
whereE®=E(0). Thenonhomogeneity parametgris given by  less are determined from

v(X)=constant

= 1| E(W) 6 fw (x)dx=N fw (X)xdx=M (14)
=W o) (6) Y I % =
which has unit§ LengtH 2. by assuming
2.1.1 Fixed Grip Loading. For fixed grip loading(see Fig. M=NW/2 for tension
4(b)) with &, (x, =) =¢,, the stress distribution becomes ) (15)
N=0 for bending.
O'yy(x) = EgZSOeBZZX' (1)

Thus, for tension load, the stress distribution is given by (E8)
Using strain-displacement relations and the boundary conditionsith

A BoN [ WB5,eP22N —2 By eP2 + WS+ 2 B,
2E%, | ePWEL\W2— e2hoW 4 pehoV_1 | 16)
_ BaiN [ €72 [eP2N(— W25+ 3B, —4) + W2 B3,— 28, + 8] — W —4
ZEgz (eﬁzzw— 1)(9/322Wﬁ§2W2_ @2B22N 4 2BV _ 1) '
I
For bending load, the stress distribution is also given by([E8), A
however, the coefficientd andB for this case are 0 (Ax— ——+B
S Bz~ Pu (B2~ B11)X
Ux(X,Y) V125 — €
B2M Bool 1— eP2aMy Eqy Bao— B
A= Egz eﬁzzwﬁgzwz_ezﬂzzw-i- 2eB22W_ 1]’ 17
@) A-B(BrBu)| A,
g oM [ paWet el (B B ) 2 18)
ES, | ef22Vp2 \W2—e?hedV 4 pehodV—1 |’

Uy(X,y)=(Ax+B)y.
respectively. For both tension and bending loads, using the strain-
displacement relations and the boundary conditi@)s one ob- The constanté andB refer to the appropriate loading case above,
tains the displacements either tensionEq. (16)) or bending(Eq. (17)).

Journal of Applied Mechanics JULY 2002, Vol. 69 / 505



For the isotropic caseH=E,=E,,, G1,=G, andv,,=v), the For isotropic materialsE=E;=E,,, G1,=G, and v;,2=7v),
stress distribution is obtained by Eq46) and (17) (for tension the stress distributio24) becomes
and bending loads, respectivelyith B4, replaced by, which

agree with Erdogan and WU'82] solution. The displacements are oyy(X)= £o(E%+ ), (26)
obtained in the limit of Eq(18) as (B8,,— B11) —0. Thus([33])
A A and the displacements are obtained from &) as
Uy(X,y)= v(§x2+ Bx) - §y2
(29) Uy(X,Y)= —vepX 27)
Uy(X,y)=(Ax+B)y.
2.2 Linear Material Variation. Once again, consider a Uy(X.y) =20y

plate under generalized plane stress conditions, as illustrated by.2.2 Tension and BendingFor tension and bending loads
Fig. 4. Assume the Poisson’s ratio;;¢) is constant, and the (see Fig. 4c) and 4d), respectively, the applied stresses are de-
Young's moduli and in-plane shear modulus with variations giveiined by Eq.(12), i.e.,

by the following expression&f. Eq. (3)):

2
E(X)=E%+ y12x N=oW, M= Ube\‘,N '
Eos(X) = Qo+ yaX 20)
G —Go.+ whereN is a membrane resultant applied along #eW/2 line
1X) = G 712X (see Fig. 4a)), and M is the bending moment. For these two
v1,(X) = constant, loading cases, the compatibility conditio??eyy/&x2=0 gives

=Ax+B and thus
whereE?, = E;,(0), EL= E,(0), andG%,= G,,0) are the mate- Y

rial properties at the&=0 line (see Fig. 4a)) and the coefficients

— 0
7;j are independent nonhomogeneity parameters characterized by Tyy(X) = (Bt 722) (Ax+B), (28)
~ Ep(W)—E14(0) where the constanta (with unit [LengtH ) and B (dimension-
Yu= w les9 are determined from Ed14), i.e.,
E2f(W) —E5»(0) w w
L2 i vV (21) J ayy(x)dx=N, f oy (X)X dXx=M,
0 0
G1(W) —G10) _
YT W by assumingsee Eq(15))
Notice that in this case they; parameters have units M=NW/?2 fortension
[ Force]/[ Length®. (29)

For a corresponding nonhomogeneous isotropic mateEal (
=E{;=E,,, G=G4,, v,=v), the Poisson’s ratio is assumed
constant and the Young’s modulus varies linearly, i.e.,

N=0 for bending.

Thus, for tension load, the stress distribution is given by (28)

—_ 0 ;
E(x)=E"+ yx 22) with
v(X)=constant N
— Y22
whereE®=E(0). Thenonhomogeneity parameteris given b A= )
© genetyy parametoris gen By LB+ 7, BN+ (ED)2W
E(W)—E(0) (30)
YT w (23) o
N(EZ+ y22W)

which has unitg Force]/[ Length®. B=

§ VoW Yo E 9 W2+ (E) 2W
2.2.1 Fixed Grip Loading. For fixed grip loading(see Fig.

4(b)) with &,,(x, =) =¢,, the stress distribution becomes For bending load, the stress distribution is also given by(E8§).
with
Tyy(X) = eo(EQy+ ¥25X). (24)
Using strain-displacement relations and the boundary conditions. —36M(2E22+ 7, W)
- — A= ,
U(0.0=0. 1, (x0=0, VoW +BE LYo W +6(E5) “WC a1
one obtains the displacements (31)
3y,0W2+ 3E3,W
U(X.y)= — v '}’_22X+ E2, IN(E1+ y20X) 36M (2E9,+ y,,W) 722—202
X 1y 1260 Y11 Y11 _ 2’}/22W+ 6E22

2 \\f5 0 4 0\2\0/3
Y2 W7+ BE22y2W" + 6(E3) “W
B YB3y IN(ED;+ v11%)

7’%1 For both tension and bending loads, using the strain-displacement
. . relations and the boundary conditions.
B2 vaEn 0
|\ 5o |In(Ew Uy(0,0=0, uy(x,0)=0,
Y11 Y11 (25)
uy(X,y)=eggqy. one obtains the displacements in closed form, which are given by
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EY y,,A B EJ EB E%y,B EYES (E2)2y2,A
Uy (6Y) = — Vlz[ _( 11 22 _ Ya2b 2R Xt ;’zzA X2+ 222 E11 222 _ 222A L u . 2 In(y11X+E‘1)1)
Y11 Y1 Y1 Y1 Y1 Y11 Y11 Y11
2B~ EDiyiyaB— ENESy1A+ (ED) yo0A 0 A,
- 3 In(E7y)  — Ey ,
Y11 (32)

Uy(X,y)=(Ax+B)y.

For the isotropic caseH=E;,=E,,, G1,=G, andv,,=v),the 4 Generalized Isoparametric Graded Finite Elements
stress distribution is obtained by Eq80) and (31) (for tension For simplicity of notation, the superscripe), denoting the
and bending loads, respectivelyith y,, andE3,, replaced byy  gjement, is dropped in this section. Material properties)., at
and E°, respectively. The displacements are obtained from Egach Gaussian integration pointan be interpolated from the

(32 as nodal material properties of the element using isoparametric shape
A A functions which are the same for spatial coordinatey):
ux(x,y)=u(§x2+Bx —§y2 m m
(33) x=2 N, y=2, Ny, (40)
i= i=

Uy(X,y)=(AX+B)y. .
. ) ) and displacementau(v):
Notice that the form of the exact solutions for displacements in

orthotropic FGMs differs significantly from that for isotropic _ Em: N 7§ N
FGMs because the former case depend on two principal Young’s u= “~ it v= “~ i
moduli, while in the latter case the explicit moduli dependence

(41)

]Ishus, by generalization of the isoparametric concept, the Young's

absent. ; ) .
moduluse=E(x) and Poisson’s rati@= v(x) are interpolated as
m m
L . E= NiEij, v= N; v; (42)
3 Basic Finite Element Formulation .21 a Zl v
Displacements for an isoparametric finite element can be wrigspectively, as illustrated by Fig. 5. Similar expansions can also
ten as be made to two-dimensional orthotropic materials where the four

" independent engineering elastic parameters are the principal
R R Young’s moduli,E{1=E14(X), E;s=Ej(X), in-plane shear modu-
u =zl Niu; (34)  lus G1,=G,,(x); and Poisson’s ratie;,= v,(X), i.e.,

m m
whereN; are shape functions is the nodal displacement corre- Eu= >, Ni(Eri.  Ex= 2, Ni(Epi,
sponding to nodé, andm is the number of nodal points in the =1 =1

element. For example, for a Q4 element, the standard shape func-

tions are 612:2 Ni(G1)i, Vlzzz Ni(v12)i,
No=(1+&E)(1+pn)ld, i=1,....4 (35) =t =t

(43)

s . . . as illustrated by Fig. 5.
where ,7) denote intrinsic coordinates in the intenfat 1,1] Some material models may be given in terms of the volume
and (;,7) denote the local coordinates of nodeAs usual, fraction (V) of a material phase, “p,” e.g., the metal phase in a
strains are obtained from displacements by differentiation as. aramic/metal FGM([35]). In this case, the generalized isopara-
£°=Beye (36) _metric for_mulation consists of approximating by the standard
interpolation

whereB€ is the strain-displacement matrix of shape function de- m
rivatives, andu® is the nodal displacement vector. Thus strain- szz N;VP (44)
stress relations are given by =1

0°=D8(X) £° 37) Wh_ereVip (i=1,2,...,m) are the_ values 0fP at the nodal points_. _
This approach offers a convenient framework to couple the finite

where D¢(x) is the constitutive matrix, which is a function of

position for nonhomogeneous materials, iBS(x) = DS(X,y).

The principle of virtual work(PVW) yields the following finite

element stiffness equatiomEM]) Isotropic FGMs Orthotropic FGMs
. E(x.y) E, (x.)
Keu®=F (38) v(x,y) Vv, (%) ij=1.23

whereF¢€ is the load vector and the element stiffness matrix is

ke= J . B De(x)B°d(, (39)

e

in which Q, is the domain of elemer(g), and T denotes trans-
pose. The reasoning above, at the element level, can be readily
extended to the whole domain, which leads to a system of alggag. 5 Generalized isoparametric formulation for isotropic or
braic equations for the unknown displaceme(h8st]). orthotropic FGMs
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element method with micromechanics-based models, e.g., self- o=
. y w=9
consistent scheme. 7 T T T
The above framework allows development of a fully isopara- T
metric formulation in the sense that the same shape functions are

used to interpolate the unknown displacements, the geometry, and E (x) E (x)
the material properties. Thus, the actual variation of the material = V= constant v=03
properties may be approximated by the element interpolation X

functions(e.g., a certain degree of polynomial functipns

@ (b)
5 Numerical Examples

2

Although the finite element method offers a lot of flexibility in Shiah s
terms of modeling material property variation, the actual choice of \’ﬁ\ | B ; y=00
properties and boundary value problems in this section was dic- =
tated by the analytical solutions derived in Section 2 for the plate E®)
configuration of Fig. 4. Here the analytical solutions are compared v=03 — 6=1
with the numerical ones. The examples are divided into two
groups:

ANEC RO mNe IS

1. isotropic FGM plate

2. orthotropic FGM plate ) (d)
For each group, two material variations along the Cartesian dirddg. 6 Isotropic FGM plate with material variation in the
tion x are examined: x-direction: (a) geometry, boundary conditions and material

properties; (b) tension load perpendicular to material grada-
1. exponentially graded materials tion; (c) bending load; (d) tension load parallel to material gra-
2. linearly graded materials dation. The finite element mesh ~ (9X9 quads: either Q4 or Q8 )
is illustrated in parts  (b) through (d) with a representative Q4

and also the following loading conditions are considered: element at the upper left hand corner

1. fixed grip

2. tension loading

3. bending loading The behavior of the elementaomogeneous versus gradésl

fs follows. Figure 7 shows the stresg, versusx for an expo-

The relevant stress values obtained numerically by the fini - ; - h ; -
element method are compared with the analytical results. ﬂ%?”"a”y graded isotropic plate subjected to a uniform displace-

. . : . : ; t in they direction witheq=A/H. According to Eq.(10), the
fixed grip loading(see Fig. 4b)), the stressr,, is considered. For men 3 X . 0= )
tension applied parallel to the material grgéation, the siwesis stressa, is uniform in they-direction and thus the graph of Fig.

X . . . ; i licable to the entire range gfcoordinates, i.e., €y
the quantity of interest, while for tension and bending loads aé— IS applic . ; . -
plied perpendicular to the material gradatigeee Figs. &) and <H (see Fig. 2)). In this case, the solution obtained with graded

4(d), respectively, the stressr,, is the relevant quantity. More- Q4 elements matches the exact solution. This is expected because
over, for a few of the examples, the displacements computed r]i[ls exact d|splacemen_t f|eld_ is linegsee _Eq.(ll) and Fig. 8,
merically are also compared with the analytical results. which is captured by linear isoparametric elements such as Q4.

The finite element meshes consist of square elem@sor Moreover, because of the linearity of the analytical solutigqg.

Q8) with edges of unit length. For all the examples; 2 Gauss (12)), a single Q4 element could be used to predict the exact

quadrature was employed. All the numerical stress values repor?é)(ﬁuuon' Figure 7 also S.ho".VS tha_t the stress obtained with homo-
gheous Q4 elements is piecewise constant due to the fact that

here are nodal values extrapolated directly from the Gauss poi | ts h indl lue f h terial "
and without any averaging. The finite element program develop S€ elements have a single value for €ach material property,
ich leads to a piecewise constant material property approxima-

in this work was implemented by the authors in a simple co ion as illustrated by Fig. 1. Therefore such homogeneous ele-

using MATLAB. ments predict the actual stress values only at their centroids where
5.1 Isotropic Functionally Graded Plate. Figure 6 illus-

trates an isotropic FGM plate with material variation in the Car-

tesian directiorx subjected to various loading conditions. Figure

6(a) shows the basic geometry, boundary conditions and proper- 10l Exact
ties. The finite element mesh consists 6f ® Q4 or Q8 elements -*- Q4 Graded
(either graded or homogenegus illustrated in Figs. ®) to 6(d). o Q4 Homog
The Young's modulus varies from r

E,=E°=E(0) to E,=E(W) (45)
either exponentially as given by E@) or linearly as given by Eq. e

(22) with E;=1.0 andE,=8.0. The independent nonhomogeneity
parameters are given by Ed$) and(23) for the exponential and
linear material variations, respectively, with

B=(In(8/1))/9 and y=7/9. (46)
Consistent units are employed here. The Poisson’s ratio is con-
stant and it is selected as follows: %1 2 3 4 5 & 7 8 o9
v=0.3 for tension and bending applied perpendicular to ma- X
terial gradation(Figs. b) and @c), respectively - Fig. 7 Stress distribution  (o,,) using Q4 elements for fixed
v=0.0 for tension load parallel to material gradati(fig. grip (e,=A/H) load applied perpendicular to the  exponential
6(d)). material gradation
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Fig. 11 Stress distribution  (o,) using Q4 elements for ten-
sion loading applied perpendicular to the linear material
gradation

stress profile with the stress at the midnode location alongthe
direction matching the exact stress value, which occurs because
the material properties at the mid-nodes match the actual material
properties.

Figures 9 and 10 compare nodal stresses interpolated from
stresses at Gauss integration points using graded and homoge-
neous Q4 and Q8 elements, respectively, which are subjected to
tension loading applied perpendicular to the material gradation.
Figures 11 and 12 show such comparison considering linear ma-
terial variation. On the left side of the domain in Figs. 9-12, the
exact solution shows an increasing trendogf, with x, while the
homogeneous elemeresither Q4 or Q8give o, as a decreasing
function ofx in each individual element. Notice that this problem
does not occur with the graded elements. In this case, the exact
solution for displacements is quadratisee Eqs(19) and(33) for
exponential and linear material variations, repectijehich co-
incides with the order of interpolation for the Q8 element. More-

gradation . o ! ¢
over, the material variation for the linear case is captured by the
1.8 element shape functions. The stress results for the Q8 element
Exadt considering exponential and linear material variations are shown
1.6 -+- Q8 Graded in Figs. 10 and 12, respectively. As expected, the homogeneous
1.4 ~o Q8 Homog Q8 element shows piecewise variation while the graded Q8 ele-
' ment approaches the analytical solution quite well. The relatively
1.2t small differences observed between the analytical and graded Q8
nl solutions may be attributed to the finite plate lengtbngth/
0.8~
0.6/
0.4t 16 '
Exact
0.2t -*- Q8 Graded
1.4 5 ~© Q8Homog |
% 6 7 8 9
1.2
Fig. 10 Stress distribution (o) using Q8 elements for ten- -
sion load applied perpendicular to the exponential material o 1
gradation
0.8f
the properties match the material gradation. Moreover, the ampli- 0.6
tude of the nodal stress jumps for homogeneous Q4 elements in-

creases with coordinatein a nearly exponential fashion, as illus-

0.4

trated by Fig. 7. These observations are consistent with those by o 1t 2 3 4 5 6 7 8 9

Santare and Lambrdfg30]). Of course, the exact solution is also

recovered with higher-order graded elements, e.g., Q8. The horgy. 12 Stress distribution (o,,) using Q8 elements for ten-
geneous Q8 elements also lead to a piecewise constant naglad load applied perpendicular to the  linear material gradation
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(o) using Q4 elements (9X9

bend-  Fig. 17 Stress distribution
exponential or

mesh) for tension load applied parallel to the
linear material gradation
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Fig. 14 Stress distribution
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ing load applied perpendicular to the

gradation
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(o) using Q4 elements for bend-  Fig. 18 Stress distribution  (o,) using Q8 elements (9X9
mesh) for tension load applied parallel to the material gradation

Fig. 15 Stress distribution
linear material gradation

ing load applied perpendicular to the

width=1 as shown in Fig. 6 utlized in the numerical in Figs. 14 and 16, respectively. Similar comments to those made
calculation—the analytical solution was derived for iafinitely comparing the Q8homogeneous versus graglexshd analytical
long plate of finite width. solutions for the tension load case also hold for the present bend-

A similar comparison is also made for a different loading caseg load case.
consisting of bending applied perpendicular to the material grada-The above results lead to the following observations. The varia-

tion. Figures 13 and 14 show the behavior of the Q4 and Q®n of stress with positiox is larger for linear than with expo-
elements, respectively, for the exponential variation. Figures b®&ntial material variation&cf. Figs. 9 and 11, 10 and 12, 13 and
and 16 show such comparison for the bending case consideriify and 14 and 16 In general, the amplitude of stress jumps
linear material variation. The stress results for the Q8 elememttween Q4 elements is larger than between Q8 elements, espe-
considering exponential and linear material variations are showrally for conventional homogeneous elemefafs Figs. 9 and 10,
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Fig. 19 Strain distribution  (&,,) using Q4 elements (either 9 T
X9 and 18 X 18) for tension load applied parallel to the material I
gradation (either exponential or linear ) vi,= 0.3 E,

11 and 12, 13 and 14, 15 and 16, and 17 and A8 expected, the 12
graded elements show superior performance to homogeneous
ements, i.e., the graded elements provide a better approximat
to the exact solution in every element. Essentially, the grad:
elements show good performance in terms of actual, no av-
eraging nodal stress ¢,,) along they=0 line and the homoge-
neous elements behave well in terms of the averaged no I O O
stresses.

Figures 17 and 18 compare nodal stresses of graded ver (c) ()
homogeneous Q4 and Q8 elementsx@® mesh, respectively,
which are subjected to tension applied parallel to the materfag: 20 Orthotropic FGM plate with material variation in the
gradation(see Fig. 6d)). The exact solution is,— 1.0. Different X-direction:  (a) geometry, boundary conditions and material
from the observation above, it is interesting to observe in Fig. ﬁ(’pemes' (b) tension load perpendicular to material grada-

on; (c) bending load; (d) tension load parallel to the material
that the Q4 graded element shows poor performance when c qdation. The finite element mesh  (Q4 or Q8 elements ) is illus-

pared to Q4 homogeneous elements for both material variatiQfged in parts (b) through (d) with a representative Q4 element
(i.e., exponential and linearAlthough mesh refinemenfor a at the upper left hand corner

fixed material gradientincreases the accuracy of the solution, the

same trend of Fig. 17 is observed for a finer mesh, e.g< 118

Figure 17 shows that the Q4 graded elements provide piecewise

continuous solutions to the nodal stresses,), while _the hor_no_- iven by Eq.(20). The independent nonhomogeneity parameters
geneous Q4 elements do recover th(_e exact solution. This is . and y;;) are given by Eqs(4) and (21) for the exponential
reverse of the effect seen in the previous load cases. Howeveh linear material variations, respectively. The Poisson's ratio is
higher order element such as @8ther graded or homogeneous 3ssumed constant.

is able to capture the exact solution in this case, as shown in Figgor the examples in Fig. 20, the finite element mesh consists of
18. » . ) either Q4 or Q8graded or homogeneouslements under gener-

A few additional remarks, regarding the behavior of Q4 el&lized plane stress. The mesh for the geometry of Figd) 2td
ments observed in Fig. 17, are in order. Both graded and homgyc) consists of % 18 elements. For the sake of completeness,
geneous elements lead to the same displacements at all nodesaﬂqng:]e properties used in the numerical analyses are given as
the same constant strains for each element. Notice that along ffows. However, due to space limitations, not all the results are
y=0 line, the nodal stress range has constant amplitude for t§gown here, but they are reported elsewhEé]). For the fixed
exponential material case, while it has decreasing amplitude @fip case and for tension and bending perpendicular to the mate-

the linear material cassee Fig. 17. The reason for this behavior rja| gradation, the following data were used for the finite element
is illustrated by Fig. 19 by investigating the strain distribution fogma|y5i5;

two mesh discretizations (99 and 18< 18 meshes For instance, 0 o 0
for the exponential material case, the nodal strains decrease expo- E;;=1, E3»=0.1, Gi,=05, »,=0.3
nentially while the Young's modulus increase exponentially. Thyg  hich consistent units are employed. For tension paralle! to the

the multiplication of these two factors cancel each other 10 giveifyeria gradation, the following data were used for the finite
constant stress amplitude at the nodal points, as shown in Fig. &ement analysis:

5.2 Orthotropic Functionally Graded Plate. Figure 20 E9=1 E%=01 G%=05 -00
shows orthotropic FGM plates, with material variation in the Car- u=s E22m A 1T U Vim R
tesian directiorx, subjected to various loading conditions. Figure For the single case of fixed grip loading, only exponential ma-
20(a) shows the basic geometry, boundary conditions and materetial variation was considered. In this case, fijeparameters are
property variation. The two principal Young’s moduli and in-plane _ _ _ _
shear modulus vary proportionally either with an exponential B=(IN8)9=6,  Bu=p2, pi=pI3
function ofx as given by Eq(3) or with a linear function ok as so that the range of properties is the following

!
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Fig. 21 Stress distribution  (o,,) using Q4 elements for ten- Fig. 22 Stress distribution  (o,) using Q8 elements for ten-
sion loading applied perpendicular to the  exponential material ~ sion loading applied perpendicular to the  exponential material
gradation in orthotropic FGMs  (E%,=1, E3,=0.1, G9,=0.5, gradation in orthotropic FGMs  (EJ;=1, E3,=0.1, G3,=0.5,
v,,=0.3) v1,=0.3)

E11=[1,2.828, E»=[0.1,08, G1»,=[0.51.0. computed numerically with those obtained by means of (£§)

For all other loading casdse., tension and bending perpendiculafor all the element types investigated in the present _Ioadlng case.
to the material gradation, and tension parallel to the material gri?® curves foru, indicate that the best elements in terms of
dation), the 8;; parameters, characteristic of exponential materigfatching the analytical solutiofEqg. (18)) are Q8 graded, Q8
variation, are chosen so that the variationsEgf, E,,, andG,, homogeneous, Q4 graded and Q4 homogeneous, which is some-

are proportional[16,17), i.e., how expected. Qualitatively, the nodal stress plots considering
linear material variation are somewhat similar to those of Figs. 21
B11= B2o= B12=(In8)/9= B, (47) and 22 and are not given hef[&6]).
and they,; parameters, characteristic of linear material variation, A Similar comparison is also made for a different loading case
are given by consisting of bending applied pe_rpendlcular to the material grada-
tion. Figure 24 shows a comparison of the displacemantsafd
v11=719=7vy, v»=0.7/9, v,,=3.5/9 u,) computed numerically with those obtained by Etg) for all

the element types investigated in the present loading case. As
expected, the Q8 elements capture the analytical soluftmn
E,;=[1.0,8.0, E»=[0.1,0.8, G;»=[0.5,4.0. (18)) for uy better than the Q4 elements. For the sake of brevity,

. . the nodal stress plots are not given hd’6€)).
Regarding the element behavigomogeneous versus gragled Finally, a few comments regarding the case of tension loading

seve_ral of th? observations made for |_sotrop|c‘mater|als n tg plied parallel to the material gradation in orthotropic FGMs
previous section also hold for orthotropic materials. Thus rath ig. 20d)) are in order. Qualitatively, the counterintuitive behav-

than repeating those common observations, this section focuse ar of homogeneous versus graded Q4 elements is similar to the
new ob_servatlons and insights. Moreover, th_e analytical splutloggse involving isotropic nonhomogeneous materials illustrated by
of Section 2 show that, for exponential material gradat®ection F?gs. 17 and 18. Thus, for orthotropic case, the Q4 graded element

. i
2.1, the relevant stress quantity only depends on the nonhomo% S0 shows poor performance when compared to the Q4 homoge-
neous parametgz,, and the displacements depend on BBt o i elements for both material variatigine., exponential or

and B,,. For linear material grqdatiofSection 2.3, the relevant linean. The reasons for such behavior are given in the last two
stress depends op,,, and the displacements depend on bgth ’

and y,,. This information will be helpful to understand the ex-
amples reported below.

so that the range of properties is the following:

For proportional variation of material propertiesee Eq(47)), 10 - ;
the change ofi, with x is linear (rather than the nonlinear func- — Exact
tion of Eq. (9)), which is similar to the behavior of the isotropic al - Q4 Graded
plate under the same boundary conditions, i.e., fixed gep Fig. T ggg‘r’;‘(ﬁ%
8). This behavior can be seen by the following limit: ol -~ Q8Homog
im  u= lim vstgz ! =" -
x= V1200 B T 4l |Ba®
(B22= B10)—0 (B2~ B1)—0 E% Bao=Bu =y gu?‘;
o [
X[elPezB1) — 1] A
) .
of |
E%
=~ V1o =5 X. (48) I
En o 1 2 3 4 5 6 7 8 9

Figures 21 and 22 compare nodal stresses interpolated from
stresses at Gauss points using graded and homogeneous Q4rack3 Displacements (u, and u,) along y=1 using Q4 and
Q8 elements, respectively, which are subjected to tension lo@é elements for tension load applied perpendicular to the — ex-
applied perpendicular to the exponential material gradation. Figenential material gradation in orthotropic FGMs (E%,=1,
ure 23 shows a comparison of the displacements gnd u,)  £9,=0.1, G2,=0.5, v,,=0.3)
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7 ‘ ' ' ‘ ' ' , , and quadratid¢Q8) quadrilateral elements have been investigated
ok — Exact i in detail. To address the influence of material property variation,
~] Q 4 Graded both exponentially and linearly graded elements have been con-
5¢ aedl I 8;2?;212% 1 sidered and compared. Several plates with continuously nonhomo-
4 =00 1 Q 8 Homog geneous isotropic and orthotropic materials were considered under
fixed grip, tension, and bending conditions. The performance of
8 graded elements was compared to that of conventional elements
2 with respect to analytical solutions.

Higher-order graded elemengs.g., quadratic and higheare
superior to conventional homogeneous elements based on the
same shape functions. One should be careful when using graded
elements with linear shape functioiis.g., Q4 as it may lose
accuracy in certain situations such as uniform traction parallel to
the material gradient direction. When using this element, we rec-
ommend to average the nodal properties of the element, which
would convert it to a regular homogeneous element. Thus the
value of material properties at the integration points used to com-
Fig. 24 Displacements (u, and u,) along y=1 using Q4 and pute stresses depend on whether first-order or higher-order ele-
Q8 elements for bending load applied perpendicular to the  ex- ments are used. This simple procedure leads to a more robust
ponential material gradation in orthotropic FGMs (E%,=1, element. A similar procedure is used in the finite element code
E%,=0.1, G%,=05, v,,=0.3) ABAQUS ([37]) for heat transfer analysis and also in the
WARP3D code([38]).

paragraphs of the previous section and will not be repeated hef¢knowledgments

This is the reverse of the effect seen in the previous load cases fojye gratefully acknowledge the support from the National Sci-
graded orthotropic materials where the graded elements show g4ce FoundatiotNSP under grant No. CMS-011595Mechan-
perior behavior to the corresponding homogeneous elemengs and Materials Progranand from the NASA Ames Research

Similarly to the isotropic case, a higher-order element such as @@nter (NAG 2-1424 to the University of Illinois at Urbana-
(either graded or homogenegusith 2x2 Gauss quadrature is champaign.

able to capture the exact solution for this loading case.
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Influence of Boundary Conditions
s.xap | ON Decay Rates in a Prestrained

Department of Mechanical Engineering, 1
Ben-Gurion University of the Negev, P I ate
P.0.B. 653,

Beer-Sheva 84105, Israel . ) . o .
Decay of end perturbations imposed on a prestrained semi-infinite rectangular plate is

D. Durban investigated in the context of plane-strain incremental finite elasticity. A separation of

Faculty of Aerospace Engineering, vari{ibles eigenfunction formulation is used for the p.erturbed field within the.plate. Nu-
Technion-lsrael Institute of Technology, merical results for the leading decay exponent are given for three hyperelastic materials
Haifa 32000, Israel with various boundary conditions at the long faces of the plate. The study exposes a

considerable sensitivity of axial decay rates to boundary data, to initial strain and to

constitutive behavior. It is suggested that the results are relevant to the applicability of
Saint-Venant's principle even though the eigenfunctions are not always self-equilibrating.
[DOI: 10.1115/1.1435365

1 Introduction self-equilibrating over the perturbed end, they still provide useful

Studies of axial decay rates of incremental end disturbzances,blcr)1unds on axial decay rate of incremental end disturbances.

prestretched plates, are restricted to free boundébesban and
Stronge[1,2], and Durban and Karf8]) with an earlier paper by . .
Abeyaratne, Horgan, and Chug]. Here, we consider several2 Perturbed Field Equations
new cases of boundary conditiorislamped, sliding, inexten-  Consider a semi-infinite platéig. 1) uniformly stretched, un-
siona) to enhance earlier work in the context of estimating theer plane-strain conditions, in thzedirection, by an axial stress
validity of Saint-Venant’s principle. Such boundary data can bspplied at the ends. Assume now that an incremental load is su-
viewed as modeling limit moduli ratios in composite multilayeregerposed on the uniform stressat the endz=0, thus inducing a
plates. quasi-static perturbed velocity field within the body. We wish to
The governing equations, extracted frgff]), are summarized examine the(plane-strain instantaneous response of the pre-
in the next section. The mathematical formulation leads to atrained plate to that incremental end disturbance under various
eigensystem, for the two velocity components, that admits a sefs@undary constraints, applied to the long fages+h simulta-
ration of variables solution for the eigenfields. These are briefiyeously with the end disturbance. In this setting, the plate is free
discussed in Section 3 with the useful distinction between syro contract uniformly in thex-direction during initial stretching
metric and antisymmetric perturbed fields. Axial decay is expdut is constrained at the onset of end loading. That formulation
nential with the decay rates obtained as eigenvalues of transcégilitates an eigenfunction analysis, which provides a simple as-
dental equations. sessment of the influence of boundary conditions on axial decay
Numerical solutions for the lowesexponential decay rate— rates of prestrained plates.
the leading decay exponelt—are detailed in Section 4. Calcu- The formulation follows an earlier work by the authd{8])
lations have been performed for three hyperelastic sdfiosm Where the standard case of free faces alongxthe-h has been
rubber$ over a range of prestraifup to an initial stretch of studied, in the traditional spirit of investigatirigl,2]) the validity
A=2.3) and with different boundary conditions. The latter includ@f Saint-Venant's principle. Accordingly, we shall just recapitulate
free (FR), clamped(CL), sliding (SL), and inextensiona(IN) @& few selected results frof3]) for future use.
walls. Further results can be deduced for mixed boundary condi-The perturbed velocity vector is written ésee Fig. 1 for the
tions upon utilizing symmetrical and antisymmetrical propertiegnit triadi, j, k)
of the eigenfields. o
The leading decay exponent displays considerable sensitivity to V=uitwk 1)
initial stretch, constitutive behavior, and boundary data. Some \where both velocity componentsi,fv) depend only orx andz
the results resemble those for anisotropic and multilayered coifie Eulerian strain rate components follow in the form
posites in linear elasticityChoi and Horgar5,6] and Horgan and 1
Simmonds[7]). This follows from the instantaneous anisotropy 8x=Uy  Yo== (U, F W)  £,=W,,. (2.2)
induced by initial stretch of the plate. The paper concludes with a 2

discussion of the relevance of the present study to assessing thaterial response is governed by three in-plane relations in the
validity of Saint-Venant’s principle in the incremental sense. Th@rm suggested by H|||18], for incremental plane-strain response,
eigensystem generate infinite sets of eigenfunctions, each decay-

ing in the axial direction but producing an eigenperturbation at the ¥ v v

edge. It is suggested that though the eigenfields are, in general, not x=aextCe; T =2uYx; 0;=(C—0)extbe,, (2.3)

v Vv ¥V
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Fig. 1 Notation for a semi-infinite plate under uniform tension
stress o Current thickness is 2 h.

Equilibrium of stress rates requires, in view @.3) and(2.1),
that the velocities f,w) satisfy the two equation§8])

aU,yxt BU, 2+ (C+ a)W,y,=0 (2.4)
(C+ a)u,,+ aw,,,+bw,,,=0 (2.1)
with
= . = +l 25
“H- 50 B=pu 50 (2.5)

The boundary conditions which supplement E@s4) are four
different constraints imposed on the velocity vedt®rl) and on
the traction rate vectaiDurban and Strongg9])

v v

=0+ (1 oYK (2.6)

along the faces= *=h, respectively. All types of boundary data,
employed in this study can be expressed in terms of velocity co

ponents as detailed by the following classification:
Free boundaries(FR)

v

ty,=0=0,=0 au,,+cw,,=0

= at x==*h
\Y
Tyz— O Yyxz=0 u,,+w,, =0 (2.7)
Clamped boundaries(CL )
V=0=u=0
at x==*h
w=0 (2.8)
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Sliding boundaries (SL)
V-i=0 u

= at x==*h

Il
o

v

ty-k=0=7,—0y,,=0 u,,+w,, =0

Inextensional boundaries(IN) (2.9)

v

t,=0=0,=0 au,,+cw,,=0

= at x==*h

V-k=0 w=0 (2.10)

Solutions to Eqs(2.4) along with each boundary dat2.7)—
(2.10 generate eigenfunctions with associated eigenvalues that
determine axial decay rates of imposed end disturbances. Empha-
sis in this study is placed on the influence of boundary data, when
coupled with initial strain of the plate, on the decay rate of end
disturbances. For each boundary data there is an infinite set of
eigenfunctions decaying exponentially in thdirection. Of these,
the most important is the eigenfunction with the lowest rate of
axial decay, as it may provide a bound on the decay rate of arbi-
trary incremental end loads.

3 Eigenfunctions and Eigenvalues

Separation of variables solutions ¢2.4) are sought via the
representation

imkz imkz
u= U(x)exp{W W=W(x)exp{W

where U(x) and W(x) are the transverse profiles, to be deter-
mined later, of the perturbed velocity field akdstands for the
associated eigenvalue. The notation(&1l) is slightly different
from the one employed in common studies due to the fdetd?
in the exponential argument. The present formulation, however, is
in agreement with the notation in the literature of wave guides and
serves as a basis for a follow-up study on the dynamic response of
the prestrained plate.

Inserting (3.1 in Egs.(2.4) results in the two ordinary differ-
ential equations

B.1)

” 7k z H 7k r_—
aU’ —p >h U+(c+ )i >h W'=0 (3.2)
k , b( k)2 "
(ct+a)i Zh) +aW’'— >h W=0 (3.20)

I)p{here the prime denotes differentiation with respectxtorhe

solutions of(3.2) can be conveniently separated into symmetric
and antisymmetric fieldéindicated, respectively, by subscripts
anda) given by

. KX . kX
Us=A; sin Flﬁ +A, sin FZW (3.39)
kX
WS:A]_?]]_ Ccos Fl 2h +A2772 Ccos FZW (33))
and
kX : X
U,=A; cos Flﬁ +A, cosh I', o (3.4a)
) kX ) X
W,=A37; Sin Flﬁ +Asm, sinn Ty oh (3.4b)
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Here (A1,A5,A3,A,) are integration constants; andI’, are the

N N
roots of the characteristic equation &.2), k=+i— and k==*i— (3.14)
aal*—dl2+bg=0, (3.5) ! 2
where odd integeréN\=1,3,5... correspond to antisymmetric
expressed as modes while even integét=2,4,6 . . . correspond to symmetric
> > modes. The solution dB.13 is identical with(3.14) but with odd
= /d_ vd—4abap = d+yd"—4abap integers in symmetric modes and even integers for antisymmetric
! 2aa 2 2aa modes. Each of the associated eigenfunctions induces an artificial

(3.6) boundary atx=0,+2h,=3h, ... which is either a slidingSL)
plane or an inextensiondN) plane, thus generating a periodicity
which explains the similarity between conditio(&L) and (IN).

d=ab+aB—(c+a)? (3.7) Each set of the transcendental equations generates infinite
eigenvalues—as is apparent for slidifigextensional boundaries
and from (3.149—which determine the decay rates of the associated
) ) eigenfunctions. Attention is focused here on eigenvaluegth
_i@r,—=p) positive imaginary parts that determine axial decay rates of eigen-
Iy(ct+a)

where

7o =12 (3-8) functions(3.1).
Compliance with the boundary data.7)—(2.10 generates the

transcendental equations for the eigenvalkieA straightforward

derivation leads to the following set of equations: 4 Material Model and Numerical Results
Free boundaries(FR) Lowest decay rates have been calculated for hyperelastic solids
. with the strain energy functiotHill [10])
tanl‘(F Trk) (Ql) 7 tanl‘(F Trk) =0 (3.9 C 1
"2) lq ‘2 W= NI AT -3+ 23— 1) | (4.)
. . . 7om; n
where the(+) and (—) signs correspond to symmetric and anti- !
symmetric modes, respectively, and where (\1,\,,\3) are the principle stretched=\\,\; is the
) volume ratio, the summation is carried over pair§; (m;)
_al',+icy, —192 3.10 which—like n—are known material parametefsotice that pa-
P ol p+i e (3.10) rametersC; have dimensions of IG¢ Nmm™?). The specific
PP models considered in this study are the Blatz{®&) foam rub-
Clamped boundaries(CL) ber (Blatz and Ko[11]) with the single term representation
*+1
tan?‘(l“l%k) (ﬂ) tanr{ Fz%k) =0 (3.11) (BK) m=-2 C==22 n=05 (4-2)
72 and two vulcanized foam rubbers due to Skems[12]: a highly

where again thé+) and (—) signs correspond to symmetric and*emPressible natural rubbeg1) with

antisymmetric fields, respectively. (S) my=-m,=45 C,=1.85 C,=—9.20 n=0.92
Sliding boundaries (SL) (4.3)
In this case there are two equations for each field, namely

and a nearly incompressible synthetic rubt®&? with

. kK ) K
sinh 'y —|=0 or sinhI',—|=0 (3.1 (S22 m;=-m,=3.6 C,;,=2.04 C,=-051 n=25
2 2 (4.4)
for symmetric modes, and The instantaneous moduli of the plane-strain constitutive rela-
K k tions (2.3) follows as|3]
cos)‘(l‘l— =0 or coshI',——|=0 (3.1)
2 2 _ )\X (92W_ +1 E c )\—(nm-+1)/(n+l) 4.59
for antisymmetric modes. a—)\—z N2 =(n+1) j M J (4.59)
Inextensional boundaries(IN)
Eigenvalue equations are here as in(BE) case apart from the Y W B 2 [(n+ 1)m— 1+ 1)
exchange of symmetric modes with antisymmetric modes. Thus - )\_ N2 J. Ci[(m;= 1A !
X z
k k —(hm;
cos?‘(l‘l% =0 or coslé F;%) =0 (3.13) +(nmy+ 1)\ (L (4.50)
f tric modes, and W
or symmetric modes, an c= :nE m;Cy\ (M DA+ (4.50)
k k INyOIN, i
sml‘(F17 =0 or sm)’(l“z?) =0 (3.13) A2+ \202n+ i) 4 1
. . 2pu=———(0y—0)= — 4.5d
for antisymmetric modes. K xi_}\g(Ux 72) A2@2n+D)/(n+1) _q o (@5

The similarity between casdS§L) and (IN) is expected since
for any symmetric mode the middle plane=0 behaves as a where the principal stretches are identified das=\,=\, X,
sliding boundary, while for any antisymmetric mode this plane=A,=1 and A=A =A""0""D for all materials described by
behaves as an inextensional boundary. In fact, it is a matter of e&d), and o,=0, o,=0¢ are the true stress components. The
to show that the solutions dB.12) are the simple trigonometric uniaxial stress-stretch relation, under the plane-strain constraint, is
roots given by
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3.2

g=A"UTD T G (M- AT D), (4.6) sl sam——
i 07 [
The perturbed systeif2.4) remains elliptic, for the three mate- 2.8 \\
rials in (4.2—(4.4), over the range of prestretch considered in 1 N\
this study, seg[3]). It is therefore permissible to restrict the 2'6'_ ‘ % 'y
space of eigenfunction@.1) to diffuse models with continuous 244 ™
derivatives. 1 L sy // l “?\
With the known expressions for the instantaneous moduli it isys 2-2 - AN
possible to evaluate the eigenvalues for each case of boundagz , ;1 Frym) e y\ Y \\\
conditions from Eqgs(3.9), (3.11), and(3.14). The eigenvalue& e e
are in general complex numbers which are labeled in increasin & 1.8 4 AW
order of the(positive) imaginary part, namely & 16 1 SL(asy) J \ \‘
0<Im(ky) <Im(Ky)<Im(Kg)<--. @7 8 o] R R
L SN
It is apparent, by simple inspection of the transcendental eiger= 1 ,7"“~~~-._
value equations that the roots appear on conjugate pairs and Wi_%D 1-2'_ P %
opposite signs£ k). Here, however, we concentrate on eigenval-g 4 5] cL(ym) - e
ues with ImK) >0, especially ork, in (4.7), which has the small- 4 . Pt
est imaginary part. That particular eigenvalue provides,(3id), 0.8 e
a bound on the axial decay rate of end disturbances. The implicz 064 e
tions of the lowest decay rates to the validity of Saint-Venant's 1 7 FReasy
principle will be discussed in the next section. 044/
In view of (4.7) we define the quantities](K) by 02 -,,"
T im 1
J+iK=Ek14:>?kl=fK+iJ (4.8) 00 t+rT T T T T T T T T
1.0 11 12 13 14 15 16 1.7 1.8 1.9 20 21 22 23
where Stretch A
_m _m Fig. 2 Leading decay exponent K for the BK foam rubber, with
K= ZIm(kl) = 2Re(k1) (4.9) digerent boungary cgnditpi)ons. Symmetric modes are shown

. . . . . with solid lines and indicated as  (sym). Antisymmetric modes
with K denoting the leading axial decay exponent dméflecting e shown with broken lines and indicated as (asy).

the axial oscillatory pattern of decay. Thus, the leading term of
eigenfunctiong3.1) will decay as

k) z .z materials(Figs. 2—4. For vanishing initial stretctix=1) we re-
~e cosli+i sind (4.10)  cover the Papkovich-Fadle equati@the limit version of the sym-
metric equation in3.9 whenA—1)
becoming dominant, among all eigenfunctions, at large distance . . .
from thegperturbed edge. ’ ’ ’ Sin(2K—12J)+(2K~-i2J)=0 (4.12)
Figure 2 shows the variation of the leading decay Kteith  with the leading solution
initial stretch\, for the Blatz-Ko solid4.2), with different bound-
ary conditions. Similar results for the vulcanized foam rubbers K=2.1061 J=1.1254. (4.13)
(4.9—(4.4) are displayed in Figs. 3 and 4. An available numericafhe value ofk associated with the first symmetric eigenfunction,
procedure has been used to solve the eigenvalue equations,fi@free faces, increases initially with stretch for the BK sdfil.
both symmetric and antisymmetric modes, and to trace the fitgt hut decreases with stretch for the S1-S2 sdliklgs. 3—4. For
eigenvalue among all competing modes. It is apparent from Figg} materials, however, there exists a definite strétahere] van-
2-4 that the leading decay expon&nis highly sensitive to initial jsheg beyond whichK decreases monotonically with For the
stretch leveh and to boundary conditions. Nevertheless, there agK rubber that branch vanishes at the necking strétch2.28
a few common characteristic patterns that emerge from the nHdicating ([3]) very low decay near the onset of bifurcation in
merical results and deserve further elaboration. tension. Notice that the S1-S2 materials do not admit a point of
To begin with, at small prestrail\&1+A with A<1) the instability in tension.
lowest decay rate, for all materials, is obtained with an antisym- Thus, bounds on axial decay of end disturbances for the FR
metric mode and free faces, abbreviated as(aBR. The case are provided by the first antisymmetric eigenfunction for the
asymptotic behavior of the leading decay exponent is sirfi@ly  vulcanized rubbers and by the envelope formed by both antisym-
_ metric and symmetric solutions for the BK rubber. The intersec-
K~\34 J=0 asA—0 (4.11) tion of those branches is at a stretch slightly abawe? (Fig. 2).
reflecting very low rates of decay near the stress-free state. In fade existence of a dominant antisymmetric mode near the stress
with that particular eigenfunctiok, remains a purely imaginary free state could not be detected from the corresponding linear
number J=0) with increasing stretch for the vulcanized rubberslastic equation
(Figs. 3—4. For the BK solid it reaches a sharp pedkg. 2 . . i
beyond whichk,; becomes a complex number addecreases SIN(2K =i2J) = (2K =i2J)=0 (4.14)
with further stretching. For the vulcanized rubbd¢sreaches a and has been expos€@,3]) only with the full nonlinear analysis.
smooth maximum, and then decreases with increasing stretchf-or clamped boundarig€L) the leading decay exponent cor-
with no associated oscillatory brancli=0), over the range of responds to the first symmetric eigenfunction, (Skr), for all
stretch considered here. three materialgFigs. 2—4, with no imaginary counterpartJ(
The first symmetric eigenvalue for free fagée., the one cor- =0). For the first antisymmetric mode, Gisy), for the BK ma-
responding to symmetric fields F&y/m), with smallest positive terial K moderately decreases with stref¢hig. 2) and is accom-
imaginary part gives much higher rates of decay for all thregpanied by an imaginary patte., J#0). For the S1-S2 materials
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Fig. 3 Leading decay exponent K for the S1 highly compress-
ible natural rubber, with different boundary conditions. Sym-
metric modes are shown with solid lines and indicated as
(sym). Antisymmetric modes are shown with broken lines and

T LI e e s e e e e
1011121314 1516 17 18 19 20 21 22 23

Stretch A

Fig. 4 Leading decay exponent K for the S2 nearly incom-
pressible synthetic rubber, with different boundary conditions.
Symmetric modes are shown with solid lines and indicated as
(sym). Antisymmetric modes are shown with broken lines and

indicated as (asy). indicated as (asy).

J vanishes at a definite stretch, characterized by a sharp cor, _ . .
(Figs. 34, beyond whictK decreases sharply with and decay I value ofK =2.160, and for the S2 solid mentioned above we

is purely exponential. find K=2_.102. The_se_ vaI_ues shoul_d be compare_d with
The striking similarity between the curves fd¢ in cases =2.1061in(4.13.Asimilar likeness exists for the imaginary part
FR(sym) and Cl(asy) in Figs. 3—4 for materials S1-S2, and inJ of the CL(asy leading eigenfunction. _

Figs. 2—up to moderate stretches—for the BK material, is sup- BY comparison, the first symmetric mode Gym) provides the
ported by a simple analysis for small strains. Taking @q11) to Smallest rates of decay for all three materials, when both walls are
the limit of \=1 we arrive at the linear elastic equations clamped, and over the full range of prestretch investigated here.
o1 The linear elastic results, obtained from the symmetric branch of

. .. 2n+ o (4.15 agree with those if[13]) with K=0.9447 for the BK ma-

sm(2K—|2J)+2n+ 3 (2K-i23)=0 (4.15) terial, K=0.845 for the S1 material arii=0.2399 for the nearly

. . .incompressible solid S2. As increases the asymptotic solution
where the(—) and (+) signs correspond to symmetric and antlT( p ymp

N . . or K from (4.15 reads
symmetric fields, respectively. Recalling, however, that the bac (4.19

ground, stress free, Poisson ratio of the entire hyperelastic family 3 |12
(4.2) is given by ~(m (4.18)
n

n Vo
v072n+1:n7 1_2,,0’

(4.16) indicating vanishingly low decay rates for large valuesnofor

the S2 solid, withn=25, we find from(4.18 that K=2.2379,
we find that(4.15 are exactly the clamped strip eigenvalue equawhich is less than 1 percent below the exact value. Even for a
tions obtained by Littld 13], for linear elastic materials, with the relatively low value ofn=0.92 for the S1 material we have from
coefficients transformation (4.18 the valueK=0.7873 which is just about 7 percent below
the exact results.

For sliding boundarie¢SL) we have the closed form expres-
sions(3.14) which for the BK material admit the simple form

\/(—R2+8R— 1)+(R-1)JR—14R+1

6R

2n+1 1
S 2n+3  3-4y,

(4.17)

Now, for the nearly incompressible solid S2 we have that25

implying a background Poisson ratio afy=0.4902 with f K—iJ= ZN
=0.9651. The antisymmetric branch @15 is then nearly iden- 2
tical with the symmetric FR branch i.12). That similarity in-

creases withn as illustrated in Figs. 2—4. For the BK material

with n=0.5 (v,=0.25, f=0.5) we have atA=1 that K whereR=\"®?, Near the stress free state, witke1+A and A
=2.1752, for S1 withn=0.92 (v,=0.3239,f=0.5868) we find <1, we obtain from(4.19 the asymptotic behavior

(4.19)
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43 1 1 1
1+iTA as A—0. (420)  Kersi=5Kereym:  Keun=5Kerasy:  Kerst=5Kewsym -

(5.3)

hese leading decay exponents are related to the current deformed
icknessh at the instance of applying the end disturbance. The
initial thicknesshg is given by

K+id~—N
)

Thus, for sliding boundaries, the lowest rate of decay near t
stress free state of a BK solid is dominated by the first antisyr?ﬁ
metric function Slasy with N=1 and K= #/2. That function
dominates also for finite prestraffig. 2). A similar behavior has
been observed in Fig. 3 for the S1 material, and in Fig. 4 for the ho=haM(+D) (5.4)
S2 material, only that in these casks 0 for both symmetric and . . .
antisymmetric leading eigenmodes. for the entire hyperelastic fam|I§,4._1).

Decay rates for inextensional boundarigé) are identical with 1€ leading decay exponeift is commonly accepted as a
those of the SL case except for the interchange of symmetric apgund on the validity of Saint-Venant's principle when the eigen-
antisymmetric modes. In symmetric fields we may regard tUnctions are self-equilibrating over the perturbed erd. This
middle planex=0 as a sliding boundar{SL) while in antisym- NaPPens here in the case of free boundaries and for symmetric

metric fields the middle plane behaves as an inextensional bouffpdes in the case of.sliding boundgrigs. In other cases of pound-
ary (IN). Hence, with due account for the appropriate widt ry constraints there is no self-equilibrium of the eigenfunction at

((1/2)h) in each half-field, we have the leading decay exponen e _e_ndeO. It may be argued, however, that if an arbitrary ?e'f'.
equilibrating end disturbance can be represented as a combination

Kinsym=Ksiasy  Kingasy = Ksisym (4.21) of all corresponding eigenfunctions then the leading decay expo-
ent does provide a bound on axial decay rate. This issue should
e resolved in conjunction with proof of completeness of the

eigenfunctions for each boundary condition.

The boundary data examined in this study is ideal in the sense

while for mixed boundary conditions, with one face slipping an
the other inextensiondSLIN), we find

KSLINZEKSL(asy) (4.22)  that no material properties are considered beyond the boundaries
x==*h. In reality, multilayered composite§6]) exhibit decay
as the leading decay exponent. rates that depend on the relative moduli ratio of adjacent layers. It
. . is conceivable, however, that at limit ratios of moduli in multilay-
5 Discussion ered composites the leading decay exponent will behave essen-

Initially, for small yet finite strains, all three materials admit thdially as exposed in this work.
same order of leading decay rates for the boundary constraints
considered here. These may be arranged in ascending magnitudes
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Displacement Boundary Value
110 | Problem of Piezoelectric Material
o | Plane With an Elliptic Hole

China Textile University,

P.0. Box 220,
Shanghai 200051, P. R. China In this paper, the displacement boundary value problem of a piezoelectric material plane

with an elliptic hole is studied. As the permittivity of the medium in the hole is far less
than that of the piezoelectric material, the electric induction of the medium is negligible.
An exact solution is obtained. Its application to the inclusion problem has been given. The
components of the stress tensor are discusge@l: 10.1115/1.1464875

Introduction ments. Symbolgt,, u,, and uz denote three complex roots of

The mechanical and electric coupling of piezoelectric and fe;%he characteristic equatidmppendix A with positive imaginary

roelectrics materials holds the key for mechatronic devices ext arts. The gnelar c_org_b |n|at|ons of tkfse f(ljJ_ncnons can ripresent
sively used in electric engineering and information technology. yressesande ectric displacements. According to fjsene has

has been 24 years since Cherepalivintroduced thel-integral 3 3

into the study of electromagnetic fields. A large amount of re-  ¢;=2 Rez kifr(zo) and D;=2 Rez dufe(z)  (2)
search data from various research gro(mg.,[2—6]) have been k=1 k=1

accumulated on the behavior of piezoelectric and ferroelectric _ 2 _ __ _ __
terials. Yang[7] has given a comprehensive summary of the r:\}?here K= Pies Kai=1, Kai= = pic, due=Miticr daw=— My and

— 2 2
lated studies before the year 2001. As an extension of these eaﬁ‘i r [(bartbag it b2ﬂ/(511(*k+ 029).
he components of the displacement vector are expressed the

results, the displacement boundary value problem of a piezoelec- . -
tric material plane with an elliptic hole is dealt with in this paper.same as given in Sos8.

As the permittivity of the medium in the hole is far less than that 3 3

of the piezoelectric m_ater_ial, on the surface of th_e I_10_Ie, the_normal u;=2 Rez Prfe(Z) + w1 Xo+ Uy Up=2 ReE akfr(zo)
component of electric displacement should diminish. With the k=1 k=1
conformal mapping method, this problem is solved. Lastly, its
application to the inclusion problem has been given and the com-
ponents of the stress tensor are calculated. whereu,; andu, are the components of displacement,equals
ayipgta—baihy, Ok equals Bypuf+az— b/ uy and oy,
Ug, v are constants.

—w1X1tUg 3)

Basic Equations

In this section it is assumed that the piezoelectric material is_a .
PZT-4 ceramic with material constants that can be found in Bdpoundary Conditions
lincourt et al.[8]. Piezoelectric material occupies the plane except the area with

Let’s consider the problem of a transversely isotropic piezoelegn elliptic hole. On the surface of the hole, there are
tric material under a plane-strain deformation. Sf#ahas dealt
with it in detail. The result can be easily generalized to the aniso- up="f1(x1,%)
tropic piezoelectric material as considered by Strod|, Barnett wheref;(x;,X,) andf,(x;,X,) are known functions.
and Lothe[11], and Hao et al[12]. In the study of Sos&9] the On the same surface, one also has
mechanical field in such materials can be decoupled into a plane-
strain problem and an antiplane shear problem. The constitutive D,=0 (5)
relation for |ineal’ piezoe|ectric ma’[el’ials Of thIS type can be WriWhereDn is ’[he norma| Component Of e|ectric displacement_
ten as At infinity

&=a;j0;tbpDy,  Ef=—Dbgjoj+ 6Dy ) oi=0"; D;=D7;(duyldx,— Uy [9%x)[2=w”  (6)

where indices andj have a range from 1 to 3, whereas indifes
andh may only vary from 1 to 2. A column notation is anticipate
in (1) for stress and strain components so thgt 2¢€;, and o3
=0,. The transverse isotropy makag;=a;3=0, a,;=as,=
and b11: b12: b23: 0

The decoupling from the antiplane case makes it possible 8plution to the Problem
represent all field quantities by three pairs of analytic functions
f(z), where z(x;+ pXo,k=1,2,3) are three complex argu-

and u,=f5(X1,X2) 4)

©

is the rotation at infinity. When the displacement
oundary value problem is studied, the rotation at infinity is nec-
essary to be considered.

Three complex analytical functions have different arguments in
the form ofx; + uX,. These arguments generally have different
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF \(/)alueT at tge Samel phyhs.lcal po'nt except g‘.flmﬁng \%l%lnts on

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- Xl-_ n order to so V_e this qU_eSt'onv according to - ‘3{ ] one
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 27,can find some mapping functiors,(s). These functions map the
2001; final revision, December 5, 2001. Editor: H. Gao. Discussion on the papguter region of the elliptic hole to the outer region of the unit

should be addressed to the Editor, Professor Lewis T. Wheeler, Department of Me- ; ; ; i —alf
chanical Engineering, University of Houston, Houston, TX 77204-4792, and will gé?rcle. For different mapping functionss,(s), the points=eé

accepted until four months after final publication of the paper itself in the ASM@OFreSF)O”dS to the same point on physical pl_ane. At infh?itthe
JOURNAL OF APPLIED MECHANICS. point s =<« also corresponds to the same point on physical plane
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(«). As all the boundary conditions of this problem are defined and homogeneous rotatias”. On the unit circle and at infinity,
these points, one can deal witf] w(s)] to replacef”(z.). This they have caused the displacement vector and the flow fungtion
problem can be solved using the theory of a complex variable.as follows:

Now, how to choose the mapping functim(;)_is discus_sed. 3

%rr:]?}ure choice is the mapping functiors(s) with following =2 Rekzl (Bt iC ) m(s),
w () =(atipmb)/2{+(a—imb)i/2, k=01,2,3 (7) 3

whereu, equals, a, andb are the axes of the ellipse apd , ,, uy=2 Regl (Bt iCmi(s), (15)
s are the three roots of the characteristic equatippendix A
with positive imaginary parts. 3

Then, the boundary conditions have become the boundary val- =2 Rez M(BgtiC)m(s)

k=1

ues of these function§"[w(s)].
On the surface of the holéon the circumference of the unit Then, another case is considered, in which at infinity

circle), one has

5 07=Df=0w"=0, ie., B=Cy=0, k=123 (16)

up=2 RGE pf il wi()]=@1(6) (8) and on the surface of the elliptic hole
k=1 3
3 up=2 Rekzl piflwi(o) 1= @11(0),
U;=2Re >, adilmy(0)]=ex(0) ) )
- 3
where the variabler equalse'’, the variablef can be found from Up=2 Rekz,l Akl () ]= @12 0) (17)

o=¢'? ande,(0);e,(6) are the known displacement functions.

In order to consider the electric displacement, a flow function 3
has been introduced by So$d. The flow functiony has follow- y=2 ReE M i[wi(0)]= @14 0)
ing differential relations: k=1

D,=dyldx, and Dy=—dyldx,. (10) Where
Therefore, the continuity equatiorino charge dD/dx, ° .
+0D,/dx,=0 can be satisfied automaticallisppendix B. Ap- ®11(0)=@1(60) =2 RekZ;l Pu(Bk+iCpm (o),
plying the flow functiony, the boundary conditiori5) can be B
simplifieq. It is known that on the surface of the hole, one has 3
(Appendix B @1 0) = @2(0) =2 RekZl Ak(BxtiCmy(o),
Ny=—0X,19s, Ny=0dXq/ds (12)
and

wheren,; andn, are the components of the normal vector arisl
the curve length along the surface of the hole in the counter clock- )
wise direction. ¢p13(0)=—2 RGE M(BiF+iCp (o).

On the basis of Eq92) and(11), Eq. (5) becomegAppendix K=t
B) The functionse;;(¢) are known and discussed in detail in the
numerical example.

On the basis of the equation in Muskhelishyili4], one has

3

3

Y=2 Rekzl Mefi[w(a)]=0. (12)  (Appendix B
3
Atinfinity 23, pfilwy(s)]
3 3 =1
2ReY, kyfu(=)=07; 2ReD, dufi(*)=D;; _ _
Kt ast (13) :lﬁl—(l/Zm)f{<P11(0)(0+§)/[0(0—9)]}d0
3 Y
Re Y, (Gk— P ()= 0" 3 ,
=1 2 2, adilwi(s)]
Whenf,”(«)=(B+iCy)+0(1/z,), one has
3 ° =iﬁz—(1/277i)f{¢12(0)(U+9)/[0(U—€)]}d0 (18)
2ReY, ki(By+iC=07; 2Re, da(Bc+iC)=D;; y
k=1 a=1 (14) 3
3 S 2 3 Ml wu(s)]
Rek21 (Qk— pkPi) (B +iCy) = ™. k=1
There are three unknown complex constarBg+iC,) and one =iB37(1/27-ri)f {e13(0)(o+s)/[a(o—s)]}do
has six real equations. The equations are sufficient to determine Y
the unknown constants. where y is the circumference of the unit circle in the counter-

Now, the problem can be studied with two steps. First, it islockwise direction.
considered that the whole plane is subjected to the homogeneousor the boundary conditiong3;, ,, and 8; are of no use;
stress tensow;, homogeneous electric displacement ve@gr, therefore,i 8,=i8,=iB3=0.
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Considering two useful integralsf, (1/o)(o+s)/[o(o u1=1.228, 1©,=0.203+1.067, us=—0.203+1.067,
—s)]do=—4mils and [, o(o+s)/[o(oc—s)]do=0 for s (22)
=1 (Appendix B, one obtains Now, a rigid elliptic inclusion is studied. As the permittivity of
3 the inclusion is far less than that of the piezoelectric material, the
E piflmi(s)]=d1/s electric induction of the inclusion is neglected.
k=1 On the surface of the hole, the displacement components are

> U;=— wX U= w1X (23)
’ 1— 7 WiRo, 27 WiAl
> adilmd(s)]=d,/s (19) . . o .
k=1 where w, is the rotation of the inclusion and the rigid displace-
ment vector is neglected.

At infinity, one has

3
2 Ml wi(s)]=ds/s
k=1 o7 =—3.0Ix1°(N/m?), o,=2x10°, o3=0,

where D°1°:0(Cm’1),
3
. ©__ — 4 o __ —
dy=—(s/4mi) f {erO) o +s)oto=s)ldo— 2, {[p(By Dy=-124x107%, «"=0. B,;=1C,
7 C,=B,=C,=B3=C,;=0. (24)

+HiC(at+iwd) +Ppu(B—iCi)(atimb)]/2, On the basis of the Eq(23), consideringx;=acosf, X,

3 =bsiné, cosf=(o+1/0)/2 and sind=(o—1/0)/2i, one has
dy=—(s/4mi) fy{‘Pz( 9)(0'+§)/[0'(0'_9)]}d0'_k21 {lak(By U= o¢1(60)=—wb(o—1/0)/2i
+iC)(a+iub)+qu(B—iCy)(a+iub)]/2 Ux=¢o(0) = wia(o+ 1o)/2. (25)
and Substituting them intapq1(6), ¢15(6), ande45(6) in Eq. (17), it

. is obtained that
—_ 3
d;=— M(B+iC)(a+iub)+ N (B—iCy)(a .
3 gl{[ (BietiC @i md) + (B =iC( ©12(0)= — wb(0— 1lo)2i — 2 RekE P B+ Cw ()
=1

+imb)]/2. ,

Using the linear algebra manipulations, one can obtain the follow- ¢, §) = w,a(o+ 1/0)/2— 2 ReE Byt Cw (o)  (26)
ing functions: k=1

filwi(s)]={[ —dsdiho—da(N3po—P3sk2) +d3p,ds >

+02(N3d;—Pads) [/[ —dspih2—da(Asp2—Pah2) =2 Rekz:l B Gl

FaPah G\ sPa P NS S, Substiuting ths conclusion and EG6) o £4.(19, one.
folwa(s)]={[ —dsp1d3—ds(A3d;— P3ds) +d3diNy has

+d2(NgP1— P3N 1) J/[—A3P1r2—A1(A3P2— P32) i

+ 03Pk 1+ A2(N3p1—P3h1) s (20) kgl Pl mds)]=d /s

falwa(s)]={[ —dopi\2—q1(d3po—dihp) +dopo) g
+02(d3ps—diA ) /[ —dspih o= di(AgPa—Psh2)
+ 03PN 1+ d2(N 3Py —Pahg)1}/s

3
A —d,/
Substituting[ z,+ (zi— a®— u2b?)Y?)/(a—iub) for s [or z gl il wi(s)]=ds/s
for w(s)], the three function$,(z,) have been determined. _ . _
Superposing the solutions on top of the homogeneous case, &%%f?dlaq—lplBla, ldzg - 'ql?hlléllb an(:]de,— t;t)\'lB%jat.h ollow
obtains the final results are achieved. The physical quantities of->"9 € lin€ar aigebra method, one has obtained the following
every point can be found. functionsf[w(s)]:

filw1(s)1={[ —asdiAo—da(N3p2—P3h2) +d3pods

3
gl afilwi(s)]=ds/s @7)

Numerical Example +02(N3dy = P3ds) J/[ —dzpih2—d1(AgP2—P3h2)
According to Sosd10], the material constants are +0aP2A 1+ 02(AsP1—Paha)]}/s
a;;=8.205< 10 %2, a;,=—3.144x10"*?, folwa(s)]={[ —dsp1d3—01(A3d; — p3ds) +dsdiNy
ay,=7.495< 10712 a4;=19.30x107*? (m?N~1) +da(A3p1—Pah1) /[ —d3Pila—d1(A3P2—P3)2)
by=—16.62x10°3, b,,=23.96<10 3, (21) +03P2h 1+ A2(N3pr—Pal1) s (28)
b13=39.40x107° (m?C™1) falws(s)]={[—dapiN2—qu(dzp,—dihp) +dapoNg
511=7.66x 107, 5,,=9.82x10" (V2N71), +02(d3py—diA ) J/[—Azpih2—d1(AgP2—Pak2)
These generalized complex variabjeg z,= X, + uX,) are +03PoN1+o(N3pr—Paig) I} s.
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or =2 Appendix A

TTTTT The Characteristic Equation. According to Sosd10], the
stress functiorlJ and the flow functiony are introduced so that
o =054 the equations of elastic equilibrium and the continuity equation of
° electric displacemer(no charge can be satisfied. On the basis of
- -9 the constitutive equations, the strainisand the electric field in-
- D f[e.n.smesEi can be obta[ned. Substltut!ng .them into .the compat-
— «+—— ibility equations of strains and electric field intensityE; /X,
- ‘—. —JdE,/x;=0), one obtains two linear differential equations.

Eliminating the functiony, the linear differential equation of the
function U has been found. Assuming (x;,X,)=U (X1 + uX5)
and substituting it into the linear differential equation of the func-

tion U, the characteristic equation @f has been obtained. That
lllll has been discussed in detail by Sg3h

oy =2

Fig.6 1 Tzhe normal stress o, on the surface of the hold Appendix B
(10° N/m) The Deduction of Egs.(12) and (18) and Two Useful Inte-
grals. 1 The deduction of the Eq. (12)he continuity equation
(no charggis 9D, /9x,+ dD,/dx,= 0. According to Sosg9], one
Substituting[ z+ (z2— a%— u2b?) ¥?)/(a—iub) for s [or z, has introduced a functiony so thatDy=dy/dx, and D,=
for w(s)], the three function$,(z,) have been determined. Su-— 99Xy
perposing the solutions on top of the homogeneous case, one ob- 5D, /gx, + ID,/dxy= 2l IXp0Xy — I2 Pl IX19%,=0  (AL)
tains the final results. The physical quantities of every point can
be found. The continuity equatior(no charge dD/dx;+dD,/dx,=0 is
Now, leta=2, b=1. The components of the stress tensor argatisfies automatically. For the curve of the surface of the hole,
calculated. On the surface of the hole, the normal steesand  introducing the normal vectar (n;,n,) and the tangent vecter
the annular stress, are given in Figs. 1 and 2. The shear stres:,S;) (with counterclockwise directionone has
7,6 iS too small to be shown. Ny= — Sy= — X135, Ny=S,= 3%, /5. A2)

) Substituting(A2) into the equation oD, , one obtains
Concluding Remarks

. . D,=Din;+Dyn,=—D;S,+Dys
An exact solution of the displacement boundary value problem noEL T e R

of a piezoelectric material plane with an elliptic hole is given. Its = — Il IXoIX 1 IS— il IX1 X1 1 IS

application to a rigid inclusion is studied. The components of the

stress tensor are calculated. Further study must focus on a more =—dy/ds=0.

general method that considers the permittivity of the medium in W= const a3)
the hole. It is also necessary to discuss the influence of the large '

deformation. As the functiony is determined with an arbitrary constant, it can

be deemed that the functiah equals zero on the surface of the
hole. Now, the expression of the functigris dealt with. From the
Acknowledgment relation between the functiog and the electric displacemebt,
This work is supported by the National Natural Science FouP2=—d%/dx;) and the complex representation of the electric

. . 3
dation of China. displacementD, [D,=—2 Re 3 \f}(z)], one can find that)
k=1

3
:2 Re X )\kfé(zk),
k=1

o; =2 2 The deduction of the Eq. (18FTonsidering the formula in
T TTT Muskhelishvili [14] (his formula belongs tds|<1 but our for-
mula belongs tds|>1), one deals with the functioR(s), ana-
0.77 lytic outside the unit circle. Therefore, the functiéif{s) equals
Ty = —V. %
© s, =32 a+ift 3 ayls
——— — -
B —— =]
— -~ — _
- — F(o)=a+iB, F(lk)=a—iB+, as"
—> <+ n=1
oy =-3.01 oy =-3.01 = ) iy —
lim F(1s)=a—-iB, llo=e'"=0 (A4)
s—0
l l l Considering the Cauchy formula fét(s), analytic outside the
unit circle, one has
oy =2

F(g):—(1/277i)f[F(a’)/(a’-g)]d0'+a+i,8, [s|>1
Fig. 2 The annular stress o, on the surface on the hole ¥

(10° N/m?) (A5)
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0=(1/2'n'i)j[E(l/o-)(o'*s)]da:(l/ZTri)J[E((r)/((r IimE(1/§)=(1/27ri)f[E(l/(r)/a]da:afiﬁ. (A9)
Y Y Y

s—0

—s)]do  |s|>1 (AB) )
wherey is the circumference of the unit circle with counterclock:rherefore' one obtains

wise direction.
Minus Eqg.(A6), Eq. (A5) becomes ) _
(1/271) | [F(o)+F(o)]/lodo
Y

F(s)=—(1/2wi)f[F(a)+ﬁa]/(a—g)da+a+iﬁ
! =(1/27ri)J[F(a)+E(1/a)]/ada
Y

__(1/27Ti){2f ReF(o)/(oc—s)do—27ia} +ip
Y =a+ipta—ip=2a. (A10)

[s|>1. (A7)

Now, the coefficient is considered. Fofs|<1, one has Multiplying the coefficientsi, the following is obtained:

(1/2“)L[F(")/("_g)]d“:““B' 27Tia:77i(1/277i)f [F(0)+ F(3)]/odo
Y

F(llg):(1/277”fy[F(llg)/(U_g)]dU' (A8) :7Ti(1/2’77i)2f ReF((r)/a'do:j ReF(o)/odo.
. Y Y
When the variablg equals zero, one knows (AL1)
a+iB=(1/277i)f[F(a)/o’]do’, o )
y Substituting Eq(A11) into Eg. (A7), one knows
|
F(§)=(1/27Ti)[2f REF(O')/(O'G)dO'ZWia}+iB
Y
|s>1|= _(1/27Ti)[ 2] ReF(o)/(o0—s)do— f ReF(O')/O'dO'] +iB (A12)
Y Y

|q|>1:—(1/27ri)H

Y

ReF(O')[Z/(a'—q)—lla]dO'}+iB |§|>1:—(1/27Ti)[jReF(U)[(0'+§)/0'(O'_§):|dO'}+iﬁ [s|>1.
¥

Letting ReF(o)=f(#), one obtains 3 Two useful integratsAs (o+s)/o(oc—s)=2/(c—s)— 1o,
one has

F(s)—iﬂ—(llzwi)L{f(0)(o+e)/[o(o—s)]}d<f, |s[>1. f(l/a')(o-l-g)/[o'(a'—g)]da'
(Aa13)

= f (Lo)[2[(0c—s)—1lo]do
y

3 .
WhenF(o-)=2k§1pkfk[mk(o)] andf(6) = ¢1,(6), one obtains :f(2/0)/(U_§)dg_j<1/0)/gdg
Y Y

= —27i(205)—0=—4mils |s|>1 (A15)

3
22, pfilwi(s)]
o f0'((r+§)/[0(0'*§)]da'=f0[2/(0'*9)*1/0']d0'
y ¥

=i,31—(1/277i)j {e11(0)(o+s)/[o(o—s)]}do.
Y

ZJZU/(U—G)dU_J'dU
(A14) Y Y
=0-0=0 |[s|>1. (A16)
4 The deduction of the Eqg. (190n the basis of EqA14), it is
That is the first part of the Eq18). known that
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3
2> Pflwi(s)]
k=1

=i By~ (L/2mi) f {eu(O)(o+s)[o(c-9)ldo.  (AL7)
Y

3
Consideringi 3,=0 and ¢11(0)=¢1(0)—2 ReZ p, (B+iCy)
k=1

X (o), (AL7) becomes

3
> oifilwi(s)]=— (1/4mi) f [
k=1 y

e1(6)—2 RekZl Pi(By

+iCw (o)

(0‘+§)/[0‘(0’§)]}d0’.

(A18)

3
Now, 2 Re 2 p (By+iCy)w (o) is dealt with.
k=1

3
2 Rekzl P(Bi+iCw (o)

I
Mw

p [Pk(Bk+iClm (o) +P(Bc—iC ()]

1

w

{pk(Bk'HC (a+iub)/ o+ (a—ipub)o]

=
H

P(B—iCl(a—imkb)o+ (a+iub)/al}i2

+

3

=2, {[PBictiCY(a+imb)
+P(Be—iC(a+imb) 1201+ (... )a} (A19)

Considering the two integral®15) and (A16), the following in-
tegral is

(1/27Ti)f ReE p(By+iCpw(o)(o+s)/[o(o—s)]do
y k=1

3
=k§1 {[Pu(By+iC) (a+iub) + Pu(B—iC i) (a+imb)/s.

(A20)
Considering this result, one obtains

3
> pfilwi(s)]
e}

== (1/4Wi)f {{e1(O)](o+s)/[o(o—3)]da
Y

3
—gl {[P(B+iCy)(a+imb)

dy=—(s/4mi) J {lew(®](o+s)/[o(o—5s)]}do
Y
3
= 2, {IP(Bi+iC(a+ipmb)
+pe(B—iCp(a+iub)]/2 (A22)
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3

Z Pl wi(s

)]=d, /s (A23)

That is the first part of Eq(19). Substitutingq, ;r, for p,, one
obtains the whole Eq19).

5 The deduction of the Eq. (20)Jsing the matrix algebra, one
can rewrite Eq(19) with the following form:

P1 P2 P3| filw(s)] d,/s
dr 92 Gs|| falwa(s)]|=|da/s|.
)\1 )\2 )\3 fé[m3(g)] d3/€
One can find that
P1 P2 P3 di/s p2 Pp3
Ap=def 01 Q2 ds|, A;=def d/s d, 0qz],
)\1 )\2 )\3 d3/§ )\2 )\3
p1 di/s ps p1 P2 difs
A,=def 01 dy/s g3| and Az=def 01 dp da/s
)\1 d3/§ )\3 )\1 )\2 d3/§
filwi(s)1=A1/Ag={[ —dsdihy—da(N3p2— P3h2) + 03P2ds
+ d2(N3dy— pP3ds) /[ —d3piho— dr(AgP2— P3h2)
+ 03P 1+ da(AgP1—P3hy) 1S
fé[wz(g)]zAzmo, fé[ma(g)]zAS/Ao-
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An Edge Dislocation in a
Three-Phase Composite Cylinder
2 | Model With a Sliding Interface

Y.-p. Shen’

e-mail: ypsen@xjtu.edu.cn ) o ) ) . )
An exact elastic solution is derived in a decoupled manner for the interaction problem

Department of Engineering Mechanics, between an edge dislocation and a three-phase circular inclusion with circumferentially
Xi‘an Jiotong University, homogeneous sliding interface. In the three-phase composite cylinder model, the inner

Xi'an, inclusion and the intermediate matrix phase form a circumferentially homogeneous slid-

Shaanxi Province 710049, PR. China ing interface, while the matrix and the outer composite phase form a perfect interface. An

edge dislocation acts at an arbitrary point in the intermediate matrix. This three-phase
cylinder model can simultaneously take into account the damage taking place in the
circumferential direction at the inclusion-matrix interface and the interaction effect be-
tween the inclusions. As an application, we then investigate a crack interacting with the
slipping interface.[DOI: 10.1115/1.1467090

1 Introduction talline materials and the damage taking place in the circumferen-

. o . jal direction at the inclusion-matrix interface. We will list some
The three-phase composite constitutive model plays an im 6'@ .
P P piay P orks on this line of research. Dundurs and Gangadh8n

tant role in the micromechanical analysis of composite material&o' < . . . ; .
This three-phase model can be employed to simulate the interg@nsidered the interaction between an edge dislocation and a cir-

tion effects between neighboring inclusiofid,2]) and also the cular inclus.ion wi.th a slipping interfgce. Mura .and.his g:ollabpra—
interphase layer formed between the inclusion and the mé@gix tors [9—11] investigated the stress fields of ellipsoidal inclusions
6]). In addition, the methodology adopted in the three-phadéth sliding interfaces under various types of eigenstrain or re-
model can also be extended without added difficulties to analyzén@te loading. Lee et a[.12] presented an exact elastic solution
multiphase composite systeRu[7]). The problem of dislocation for a circular sliding inclusion embedded in a half-plane in order
in the three-phase model has also received many investigatdgsinvestigate the joint effect of a traction-free boundary and an
attention since the obtained solution can be used to study craeterface. Gharpuray et aJ13] investigated an edge crack that
growth in composites, as well as strengthening and hardenitggminates at a slipping interface with a different material [ 4]
mechanisms in alloyed materials. Luo and Ch2hpresented an presented a general method to obtain the rigorous solution for a
exact solution to the problem of two concentric circles in an urgircular inclusion embedded within an infinite matrix with a cir-
bounded medium with a dislocation in the intermediate matrixumferentially inhomogeneous sliding interface in plane elasto-
region and no applied loads. In their model, all interfaces aggatics. By virtue of analytic continuation, the basic boundary
assumed to be perfectly bonded; they found that in comparisgalue problem was reduced to a first-order differential equation
with the two-phase model, the so-called trapping mechanism @ a single analytic function inside the circular inclusion, and the
dislocations is more likely to take place in the three-phase modghtained differential equation was rigorously solved to obtain a
their analysis and calculation showed that in the three-phaggite form solution. Lubarda and Markenscéff5] presented an

model the orientation of Burgers vector has only limited influencgnerqy study of sliding circular inclusions. They derived simple
on tdh‘;’hStab'“g of dlfslocatlc?n. gallssaLtjlnee. atnd S?r[ﬁilrg(t)hnsmi-h relationships between the energies of inclusions with sliding and
SLZse 2||?;§C&?Tn(3u2;:) r? gﬁ ir:tsecr)f(;itleznel?ee;?gc:ngs\;vl;m:d t(;e onded interfaces. Their results are of interest for the evaluation
. ! . - average elastic properties of composites with sliding interfaces.
perfectly bonded in their analysis; their results showed that t The Iirgnitations gf tﬁe aforementigned works lie ingthat some

presence of the interfacial zone can have a profound effect upon . i . ; .
the stress field in the matrix and in the inclusion. Xiao and Chdpvestigators only considered three-phase inclusion with perfect

[5,6] investigated the interaction between a dislocation and '&€rfaces and ignored the damage taking place on the inclusion-
coated circular inclusion. Their results showed that when the coft@trix interface, while other investigators considered the interface
ing layer is thick, the elastic property of the inclusion has nga@mage but ignored interaction between neighboring inclusions.
significant influence on the force of the dislocation; while whehe present investigation discusses the interaction problem be-
the coating layer is thin, the elastic properties of both the inclusidyeen an edge dislocation and a three-phase circular inclusion
and the coating can affect and change greatly the equilibriufith a sliding interface. In the three-phase cylinder model, the
position and the stability of the dislocation. inclusion and the matrix form the inner circumferentially homo-
From another point of view, a study of elastic inclusions witlgeneous sliding interface; while the matrix and the composite
sliding interfaces is important for modeling certain features gfhase form the outer perfect bonding interface. It is of pragmatic
material behavior, such as the grain-boundary sliding in polycryand theoretical interest to examine the mobility of the dislocation
when different types of interfaces coexist. The analysis demon-
E:Autth% tlo (‘jNEOTL CCXreT_pznden%e should be add‘:essed. strates that all of the unknown coefficients can be determined in a
MECRANICAL ENGINCaRaTor publication n the ASME durwaL o ApauizoMe. decoupled way even though different types of interfaces coexist.
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 23/AS @ result, mechanical analysis of this kind of composite system
2001; final revision, Oct. 15, 2001. Associate Editor: M.-J. Pindera. Discussion @an be simplified considerably. It shall be addressed that the prob-
the i is T. . . .
of Methanical Engineering. Universiy of Houston, Houston, T 772044705, ang Studied here could provide a fundamental solution for the
islocation density method for the interaction between an arbitrary

will be accepted until four months after final publication of the paper itself in th ) : ’ ) el
ASME JOURNAL OF APPLIED MECHANICS. crack and a three-phase circular inclusion with a sliding interface.
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To demonstrate the importance of the obtained fundamental sai- Analysis
tion for edge dislocation, we then investigate matrix cracking in

the three-phase composite system. In order to treat the boundary conditions on the inner cifgle

we introduce the analytical continuation defined(bge England
2 Formulation and Problem Statement [17))

For plane deformations, the stresses and the corresponding S T (a2) o (A2 >a
boundary conditions can be expressed in terms of the two well- $1(2) 2¢1(a%12)— (@) [
known Muskhelishvili's complex potentialg(z) and ¢(z) as

(Muskhelishvili[16])

(6)

bo(2)= —2¢5(82/z) — yp(a2lz) a?b<|z|<a

— Accordingly, we can introduce the following defined analytical

Tt op=2[4"(2+¢'(2)] (1) continuation to treat the boundary conditions on the outer circle
on—iog=¢'(2)+¢'(2)-e*[2¢"(2)+ ¢ (2)] Iy
i f (Ptipy)ds=(2)+2¢' (2)+ Y(2) @ [ $2(2)=—263(b%2)—ih(b?z) b<|z<bla -
b3(2)=—2¢4(b%2)—ys(b¥z) |Z<b

2G(u +iug)=e [ kp(2)—2¢' (2) ~ (2)] ®3)
wherez=x+iy =re'? is the complex coordinat& is the in-plane 3.1 Satisfaction of Boundary Conditions on the Sliding In-
shear modulus. For the plane deformation of isotropic materiaf§/face I'a. In view of (6), the continuity condition of tractions
x=3—4v wherev is Poisson’s ratio; for the plane deformation oftCrossl’s can be expressed as

transversely isotropic materiale=1+2G,,/K,,, whereK, and +_ - _

G, are the plane-strain bulk modulus and in-plane shear modulus. [$1(n)F o) ]7=[2(7)+ o(7)] I7=a ®
We now consider the problem as shown in Fig. 1. The circulavhere the superscripts+” and “ —" denote the inner and the

region |z|<a is occupied by inclusion phas®, whose elastic outer sides of the contour being considered.

properties arec; and Gy ; the annulus regiom<|z|<b is occu- It can be found from Eq(8) that the functionf(z)= ¢,(2)

pied by the matrix phas8, whose elastic properties arg and  + ¢,(z) is holomorphic in the annulua?/b<|z|<b, except at
G,; the outer regiorjz|>b is occupied by the composite phasehe polesz=e andz=R%/e. The principal partf,(z) of f(z) is
S; whose elastic properties akg andGg. In the following analy- _

sis, we will use the subscripts 1, 2, and 3 to identify the corre- z—a%le v1A 5
sponding holomorphic functions defined in the regids S,,  fo(Z)=AlIn(z—€)—Aln—-—+ —a%e (@ Ib<|z|<b)
andsS;. 9)

* The inclusion and the matrix phase form a sliding interfacghere
I',. The shear stress is proportional to the tangential displacement

discontinuity on the sliding interface, and in addition both the GZ(BXHBy) a’(a%—|el?)
normal stress and normal displacement are continuous across the = (1 Ky) V1= P . (10)
interface, i.e.,

0_519>:0_$):)\[u(92)7u(91)] G_(rrl):(rgrz) uED:uﬁz) |7]=a Therefore, we can express

4) f(2)=¢1(2) + h2(2)
where \ is a non-negative constant interface parameter. When +oo
N=0, shear stress on the interfalcg becomes zero and the inter- _ n -n
. : = AZ"+A_,zM+Aln(z—e

face is smooth; whem=«, the interfacel’, becomes a perfect ,,21 (An nz ") ( )
interface. . _

The matrix and the composite phase are ideally bonded on their z—a’le v1A )
common interfacd’,,, i.e., both tractions and displacements are “AIn———+ -~ (a%/b<[z]<b), (11)
continuous.

2_ (3 @) _ (3 2)_ . (3) 2)_ . (3) _ and the Laurent series whose coefficieAts, are to be deter-
of=or on'=o uP=u; u(,,A _P(" A\§|—b ®)  mined is convergent in the annulag/b<|z|<b.

An edge dislocation with Burgers vectbr=b,+ib, is located The continuity condition of normal displacement acrbgscan
at an arbitrary poine=X+iy in the matrixS,. In addition, the be expressed as
three-phase composite system is subjected to remote uniform

Ioadingsafx, O';Oy, O';Cy. ERe{Til[Kl(ﬁI(T)JFQSI(T)]}
v 1
Perfect 1 -1 _ +
Interface T, = 2_GZRG{T [K2¢2 (7')+¢2 (7')]} |T|:a- (12)
, An edge dislosgtion Substituting(11) into the above and eliminating; (7) and
Ve é5 (7) will yield
+ v a2 - et 2
; $1 (D) + 2 Ml () + by (1+ 5 ;1 (3% 7)
) /z 2
Matrix ST Siipping =B f(n+ @] |7=a (13)
Interfa; a
Composite phase S, where the dimensionless parametgisand 8, are defined by
kG + Gy k,G11+ Gy
m= = (14)

= = )
Fig. 1 An edge dislocation in the three-phase cylinder com- #1G2+ Gy #1G2+Gy
posite model with a slipping interface Now consider the functiofi)(z) defined by
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pL— —
d1(2)+ 2 mé(alz)+[(1—n1) ¢1(0) + B1Ale]z— By
22 2_
2 A,z +2 A_(n_2a 2204 A-A )In(z e)—JZ;fZZ)
Q(2)= 2 (15)

_771¢1(Z)_ ¢1(32/Z)+[(1 7;1)¢1(0)+,81A/e]z+,81

- _
—Z z—a‘le A

X EA,nz—"JrE A, a2t 277N (A A )In—+ ”24 |z|>a.
n=1 n=1 4 z—a‘le

|z <a

It is seen from Eq(13) that()(z) is analytic and single-valued A
in the whole complex plane including the points at infinity. Ac- B1Re[A}+ (7~ DRe(¢1(0)} =B, Re{g]- (19)
cording to the Liouville’s theorem()(z) should be a constant.
Due to the fact that the constant only represents rigid-body trans-
lation ([16]), then it can be set zero and the following condition For convenience, we introduce the following dimensionless pa-

can be arrived at rametery
Q(2)=0. (16)
K1 1
o WY
From the above condition, we obtain the following two _ G G )
equations: X=———> - (20)
¢1(Z)+ 22 771¢1(a 1z) The tangential interface condition dfy can be expressed as
= — — 4 Ael ’ ’r— Aa
~ L= m) 42(0)+ BuNelzt By Im{61" ()= 64 (7)}= 5517 Lads (7)+ 65 (1))
X A"+ D, A _pa 22" \a -
Z A2 A 5. M ki (D + ¢ (D]}
1
—2z? ey, AZ 21
+(A*Aa7)|n(2*e)*% |z|<a a7) 1)
Substituting (11) into the above equation and eliminating
B ¢, () and ¢, (7) will lead to
¢ (8%/2)+ 91¢1(2)
:[(1_771)¢i(0)+:31K/€]Z+:31 _T[¢1 7')"“151 2/7)]+__7'[¢1 +¢1 (@%7)]" +y (1)
< & o ?—
X| 2 Az 2 Ayl i — 2 bl @I+ b ()= 5 ¢y (al7)
_ — 2
) 2 2
(AL mﬂ+L’H Z>a (18) =By (1= 1@ |d=a. (22)
a z z—a‘le

Then the first compatibility condition can be obtained from the In view of the above equation, we introduce the functib(z)
compatibility betweer(17) and (18) as follows: defined by

2 1 o o
$1(2)— iz méi(a®lz)+ —Z[¢1(Z)+ $1(a%12)]—[(1+ 71) $1(0) + B1Ale]z— By
z e2y,AZ
2 A,z —2 P - A+A )In(z e)+% |z|<a
I(z)= 2 1 o - (23)
—mbi(D+ 2 b1(a%12)+ ;Z[¢i(2)+ $1(8%12)1—[(1+ 71) $1(0) + B1Al€] 2+ By
5 -n N n+2,-n_ —Z z—-a’le '}’1K
X nz,l A_.z —Zl A, a2tz A+A )InT+Ta2/4 |z|>a.
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We can find thatll(z) is analytic and single-valued in the +oe
whole complex plane including the points at infinity. By Liou- ¢,(z)= ¢1(0)2+B12
ville's theorem,I1(z) is identically zero. We can then obtain the
following two equations: oo

2

$1(2) = 3 m1ha(2 /z>+—z[¢>1( 2)+ ¢1(a%2)]

n—2+2xn; e "
- - A_ Zn
5 (N+2x)ntn—2

n—2

—2n+2
ﬁlz (n+2y)y+n—2 a A-n-2)

. efn+3_ e7n+2 )
=[(1+ 7,) $1(0) + B1ATe]z+ B, t—r AT mA)Z” (|z]<a). (29)

From (28), we can similarly get the expression fé(z) in its

+ + o
X Z Anzn_z A,(n,z)a‘Z”“z"
n=1 n=1

continuation regionz|>a as follows:

(A+A 2)m(z e)+—ezy_1A22 (24) nt+2+2x e
a*(z—e) ?1(2 )——¢1(0)Z+,312 W(Afn“\
D 229, <a2/z>——z[¢ 2)+ $1(a%2)] T L
191 2% 1 1 +yAa2( g +1) +,312 . T 2T 0
=—[(1+ 771)¢1(0)+51A/€]Z+31 _ 2n+2g=n-2_\
X An+2a2”*2—TA)z’” (|z|>a). (30)

+oo
X 2 A,nZ 2 A 2n+2
n=1

2\ z-alle  yA
A+A s IN———+ ———= |z|>a. (25)
z z—a‘le

Substituting(29) and (30) into (11) will result in expressions
for ¢,(2) as follows:

= z—a’le
The compatibility betweef24) and(25) gives the second com- $2(2)= nzl (AnZ"+A_nz" " +Aln(z—e)—Aln
patibility condition .
A 3 n—2+2xmn
B1IM{A}— (1+ 77)Im{ $1(0)} = B, Im[g (26) t—a%e az/e ¢1(0)2— 512 4 (N+2x) 7 +n—2
Noting thatA; in (19) and(26) equals—®;)(0)+ A, in Luo n—2
and Cherj2], and that; (0) equalsb 4,(0) in Luo and Chen2], ) :312 L (N+2x) 7, +Nn—2
then it can be easily proved that the two compatibility conditions
(19) and (26) are equivalent to the result obtained by Luo and e e Ntz
Chen([2], Eq. (14)) for a perfectly bonded interface. X|a 2 PA_ o)t & AT 2(n—2) AlZ"
We can get the following first-order partial differential equa-
tions for ¢,(z) from Egs.(17), (18), (24), and(25) (a?/b<|z|<a) (31)

2xm—1)$1(2)+(1+ 71)2¢1(2) oo

= (=14 2x71) $4(0)2+ (N—2+2x 1) By $2(2)= 2 (A2 +A 2 )+ AlNn(z-e)~Aln Z_i%
><§ A—AS "+ § (n—2)|a 2" 2A_ A n+2+2y
= n le, ~(n=2) + P a2/e+¢1(0)2 ﬁlE (Nt 24 20) 7,
+ eia.n:?’ZA-i- aze(;]njzz) Alz" (|z|<a) 27) x|A_+A e " n ylxaz(nfng—nﬂ 20
—2(1+X) mh1(2)+(1+ 71)261(2) Nt 2

(An+2a2n+2

=(m—1+2x71) $1(0)z— (n+2+2x)B; _3121 n+(n+2+2x) 7

= 2ng—n o g2ntZgn-2_)
x> AL +A +71Aa2<”—1>€—”+1)z—” > A)z’” (a<|z|<Db). (32)
n=1
A ot ntZgmn-2_ Up to now, the boundary conditiord) on the sliding interface
—,312 (n+2)| Ay 22772 i A2 " I', have been completely satisfied.
(|z|>a). (28)

3.2 Satisfaction of Boundary Conditions on the Perfect In-
It can be easily checked that the left-hand side of @) is in  terface I',. The continuity condition of traction across interface
agreement with the result derived by R14] when settingf(z) I'y can be expressed as
=0 (homogeneous interfagén Eq. (4.17) of his paper. In Egs.
[h2(€)+ Pa(E)]" =[da(§)+ da(§)]™  [é]=b.  (33)

(27) and(28), we have expanded all of the terms into power series
to facilitate the ensuing analysis.

From (27), we can get the expression fe (z) in its definition The following expression can be obtained from the above
region|z|<a as follows: equation:
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9(2)= ¢2(2) + ¢3(2)

+oo
= (Byz"+B_,z ") +Aln(z—e)—Aln(z—b?%/e)

n=1
— Substituting(34) into the above and eliminating; (£) and

1 1
2—C;2[Kz¢§(§)+¢£(§)]= 2—63[K3¢§(§)+¢3+(§)] |€]=b
(36)

YA - o
+pAINZt - b2/ a<|z|<b%a (34) ¢2(&) will yield
where b3 (E)+ mbs (£)=P29(§) |él=b (37
b?(b?—e|?) Gz 11k, where the two dimensionless i
_ _3 parametgysand B, are defined by
=S PTG, Tia, (35)
and the Laurent series whose coefficieBts, are to be deter- 7 _ k3Gt Gy _kaGst Gy (38)
mined is convergent in the annulus regiast|z|]<b? a. 2 k,G3t G, 7 kGt Gy
The continuity condition of displacements acrdsg can be
expressed as Consider the functio\ (z) defined by
|
- YA Il'b?
d3(2)— B, E B,z"-Aln(z— b2/e)+ b2/ —pAlnz+ p,Ilz+ |z|<b
A(2)= bo = (39)
. z—e
— 03(2) + B2 21 B_.z +AInT + ppAlnz+ p,llz+ |z|>b
e
I
where B iGs(BX—iB )

$3(z)—ﬂ_(TK3)),|nz+0(l) when z—w. (45)

1 1 o
M= Z(O'XX+ ayy), II'= E((ryy* ) tioy,. (40)
Apparently, Eq.(44) is not in agreement witli45), while our

It is apparent thatA(z) is analytic and single-valued in theresults(42) and(43) are in accordance witt#5). _
whole complex plane including the points at infinity. By Liou- Substituting the above two expressiddg®) and (43) into (34)

ville’s theorem,A(z) is identically zero, i.e., will result in the following expressions fap,(z):
(z)=0. (41) +oo K
2 B2~ Aln(z—be)+ —— 7=
Hence we can obtain the following two expressionsd¢g(z): $2(2)=(1-B>) b e
= K oo /b2
#(2)=Bo| 2, By~ AlN(z=b%/e)+ ol +pAInz +3, Bz "FAIn(z-e) + pllz
n=
I’ b2 a<|z]<b (46)
—n,llz— |z|]<b (42)
+o —
7oA
Bo| < 7—e bo(2)= Z B,z"-Aln(z— b2/e)+ =+ 1— BZ)
¢>3(z):7]— > B_nz "+AIN——|+pAinz+Iliz b/ 72
2| n=1 —
— - z—e I1' b2
I1'b? X[ D Bz "+Aln—|+AlInz—TIz—
|z|>b. (43) n=1 z 722
b<|z]<b?a. (47)

We have checked carefully our results with those obtained by

Luo and Chen(2, Eq.(19)) and found a discrepancy between the The boundary condition§5) on the perfect interfac€, have

two in the singular behavior of;(z) at z=0. It can be proved been completely satisfied in this subsection.
that their result can not guarantee the dislocation condition along

the circle when traversed counterclockwise a full circuit. Further-
more, our result is in agreement with that derived by Honein and3 3 Determination of the Unknown Coefficients in the

Herrmann[18]. _ Laurent Series. In order to simultaneously satisfy all of the
Remark It can be deduced from E@L9), in [2] that boundary conditions on interfacEg andI',, the two expressions
for ¢,(z) and ¢,(z) obtained in the above two subsections must

iGo(by—iby) be compatible to each othéee Luo and Chef?], England[17],
¥a(2)= m(1+ k) INz+0(1) when z—c,  (44) Worden and Keef19], and Chao and Taf0]). Physically, the
compatibility conditions forqﬁz(z) and,(z) mean that the stress
while according to the definition for an edge dislocation with Bufie|d and displacement field in the intermediate matrix are unique.
gers vectonb +|b , the following asymptotic behavior faf;(z) The compatibility condition forg,(z) in the annulusa<|z|
shall establlsk([18]) <b will result in
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+oo

E AnZ™+ $1(0)2=(1- ;)

+oo

yA
2 Bnz"~Aln(z—b%e)+ - b2/4+7;21_[z

EA Al z—a2/E+ 'le i n+2+2y A 4A
B nZ : z—a’le /31,]:1n+(n+2+2)()7,l -n

Ean

(48)

2na—n

+ ,ylAaZ(nfl)EfnJrl an

n+2 - 2n+2€7n72_
2n+2 -n
312 ' n+(n+2+2x)7y (A”*Za nr2 A2 (49)
The compatibility condition fors,(z) in a<|z|<b will result in the identity

2 2

Bo(@217)— GolDP12)+

$3(2)=0 a<|z|<b. (50)
The above identity is equivalent to the compatibility condition obtained by Worden and ¥K&eSubstituting(31) and(47) into the
above equation and also applyidB) and(49) will result in the following equation

+oo

2/a +e 2n
— L — — z—a‘le (n—2+2x7ny)a
21 (a?"Az "+a 2"A_,z")+Aln
A=

I~ ny+n—2+2y

n—A%) z "—¢i(0)a%z !
(n—2)a®"
—312 Y

g—n+3

o g—n+2
—-2n+2 + + -n
~ nptn—2+2y |2 AT i 7A az(n—Z)A z
+ oo B ’
—E b2"B,z "+ ——1) E b~2'B_,z"+A In(z—b%/e)
n= 72 n=1

4o

II
+1b%z '+ —z+(a?—b?)

72

+ o0

P02+ D (N+2)An 02" D, (N=2)B_(h_p2Z "—Ae 'z ! 'b%z 3
n=-1 n=3

=0 a<|z<bh. (51)
The above Eq(51) can be decomposed into the following two equations
40 B + 0 o + 0
> a A"+ 77—2—1) > b 2B_,z"+AIn(z—b%/e) +7’—z+(b2—a2)2 (N+2)A,,,2"=0 (52)
2 n=1
+ oo

2 a2'A,z AN

(n—2+2yp)a® [ — —e "
_ 2 -1 A _A___|9—n
¢1(0) 3122 Ny +n—2+2x An= A2
(n_z)aZn i €7n+3 . €7n+2
— N, - + + 7n+ 25—1
5123 Ny +n—2+2y a A-n-2) a’ V1A az(n—Z)A z " 1lb%z
+o

4o
- 2 b2'B,z "+ (a?—b?)| Az -
n=1

> (n2)B_m_2)z“Aelzlﬁ’b2z3} —0. (53)
n=3
Expanding all of the terms in Eq&18), (49), (52), and(53) and equating the same powerafill result in the following set of linear
algebraic equations:

e &
A1+(,32_1)Bl+¢i(0)=(1_,32)(_2 T of 72A + 7,11
p—1— (54)
pA;—B1— ¢1(0)+ (p— 1)A1:—A+_A I

A+ (B—1)By=(1—- ’82)(2b4A be?’A

v

~ 55
e XBi— A xBi A (59)
Ax—p “Bp— A= 52
(1+x) 2e? (1+y) 2€?
ry PUES T
Ant(B2—1)B,=(1— ,32)( b2n W')’zA)y (56a)
nB1a*" ?Ap—[n=2+(n+2x)(71= B ]A_ (2 +[N=2+(N+2x) 71]B_(n_»)
2n—4 a2n45 2n-2 _
=[n=2+(n+2x) (71~ B1)] n=2je" 2AT T3 y1A|+ By A=[1+(1+2x) 7,]11'b?5p3, (560)
2_ .2 Coneay [ P2 on+4n '82 e ~— Ir
(b*—a‘)nA,+a A_ n-2t ——1 b~ B_ (n-2)= 7 -1 WA—n—zﬁng,, (56c)
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B Bi(Nn—2+2x7,)
(n+2x)m,+n—2

(n—2)B;a°"
T (n+2x)p+n=2

p— (n—2)B18
" (n+2y)p,+n—2
€7n+3 o Efn+2 A:| |: ﬂl(n_2+2X7]l) a2n
)

_ ~ A 2 W2\ h2 _
. v A+ a2(n—2 N+ 2y) ptn—2 nenA+(a b)Il'b“s,; for Nn=345... +»

A_(n-2—b?"B,+(b2-2a?)(n—2)B_(, 5

(56d)

where §;; is the Kronecker delta and=(a/b)? is the volume where
concentration of the inclusion.

Associating Egs(54), (55), (56), (19), and(26), then all of the
unknowns¢;* (0)=a¢;(0), AX ,=A.,a*" andB* =B.,a*" 1 B,—1 1
can be uniquely determined in the following decoupled way: ( )

1

AY
( BY )zKllRe{Vl+U1}+iTlllm{V1} (57)

#1*(0)
A 1 p-1 -t
2 -1 P—
(szr):Kz Re[V,}+iT, - Im{Vy} (58) T,=| 1 -1 -1
B 0 —n—1
A-,r\]— 1 1
At(n—z)

=K, 'Re[V,+ U385} +iT, L Im{V
*B: n E{ n 3 ns} n { n 1 ,32—1 1 ,32_1
B*,,_

(n-2) Ky= XB1 _p_z , To= 1+ XB1 -2

+Uz8,s) (N=345...,4%)  (59) Y

1 0 (B.—1) 0
npB. —[n=2+(n+2x) (79— B1)] 0 [n—2+(n+2x) 7]
K,= (pt=1)n 1 0 (@,1)#1—2
72
—2+2 -2
[ _ Ba(n—2+ an) ~_(n )1317 o (pl—1)(n-2)
(n+2x)m+n—2 (n+2x)nmtn—2
1 0 (B.—1) 0
—ng; —[n=2+(n+2x) (79— B1)] 0 [n=2+(n+2x) 7]
Th= (p~*=1)n -1 0 (1,& P2
72
—2+2 -2
P =2 2xm) anl)— } Sl )Blf p " (p1=1)(n-2)
(n+2x)m+tn—2 (n+2x)m+n—2
(1-B2)Bp (B2=1)(B~=Bp)\ _
Vi=| BT At (p—1B™" |A (60)
BB~* 0
- ~1)p(1-pBp)
VzZ(O.al_BZ)QBZPZ)Aﬁ-((IBZ " X,,;/fﬁ)>x
- B o XB1 ,
0.58 05873 -
Bp" (B2=1)B" 2%p"(p— BB) _
(1=B2) — 1-B8B 1
[n—2+(n+2x) (71— B1)] [n—2+(n+2x)(771—_,31)] B" +Blﬁ _
Vp= (n—2)B"? A+ Bo ) B Zp" 2 A
2
0 _772 n_2
B (n=2)B1(1—-8B) [ ~ Bu(n—2+2x7) | 1
(N—2+np+2xn)B"? (n—2+nn,+2x7,) 8" (N+2x)m+n=2ng"
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0 +o +o0

s [1+(1+2y) 74]p M1 ¢2(z)=21 an”+(1—/32{21 B,z"— A In(z—b%e)

n= n=
U]_:aH -1 y U3:_a 1 , y — —
0 %H '}’2A HrbZ
(p_z—p_l)ﬁ’ +m +7]2HZ+ Z +A|n(Z_e) ZESZ
(62a)
e +oo
=3 Yo(2) =022, NB_z "2 (= 1)b?
=
+ o ~
We can observe from the above that the three unknotuns | g2 A 72A

B;, and¢’(0) are independent of the interface paramegtewhile =" z(z—b%e) z(z—b?/e)?
all the other unknown coefficients in the Laurent series will de-
pend on the interface parameferlt can be seen that the structure = _ By
of the resulting linear algebraic equations obtained previously is —2 bZ“an’”+(——1)
simpler than that obtained by Luo and ChigXj even the more n=1 72
complicated sliding interface is considered in our discussion. It +oo
suffices to solve independently a set of linear E§S) of second x| > b=2"B__ 2"+ AlIn(z—b?/e) | +AlIn(z—e)
order, a set of linear Eq$57) of third order, and sets of linear n=1 "

Eqgs.(59) of fourth order to uniquely determine all of the unknown
coefficients in the Laurent series. The problem of an edge dislo-
cation interacting with arbitrary number of concentric circular in-
clusions with sliding interfaces can also be solved through apply-

eA —
- tla- ) Il+Ae 1%z 1+11'b*z 3

ing the decoupling relationship. In addition, the advantage of this " Ez ze S, (620)
methodology will become more apparent when the number of the 72
interphase layers is increased. Here we point out that7/Ralso o
observed a similar decoupling relationship when solving a circular B> Cn z—e
inhomogeneity with stepwise graded interphase under thermome- $3(2)= 7 Zl B_nz "+Aln——|+pAinz
chanical loadings. Since the fact that he only considered remote "
uniform loadings, then it is only needed to treat>@2real matrix I’ b2
and a 4<4 real matrix to obtain stress distribution within the +1Iz+ zeS; (63a)
circular inclusion. It is just due to the existence of this decoupling 722
relationship in the concentric circular inclusion that the novel B +oo eA
methodology, whose main feature is the transfer matrix method, y,(z)= 722 2 NB_,z "2 5——
proposed by R{i7] can be utilized. If the circumferentially inho- M2 |n=1 z°(z—e)
mogeneous sliding interface mod&tu [14]) is adopted, the de- 4o
coupling strategy will become invalid due to the fact that the n _2 bZ”B_z‘”+KInZ;e+ 7A€
power series method will lead to a coupled infinite system of B2 “~ n z  b%z-e)
algebraic equations for the unknown coefficients.
1h4
+(7,— 1)IIb%z - pAb?z 2+ nb z 3+11'z
2
3.4 Explicit Expressions for Muskhelishvili's Potentials +pXIn z zeSs. (630)

¢i(2) and ¢;(2).

Up to now, all of the coefficients have been

uniquely determined. Then explicit expressions for the holomor- The stress field can be obtained by substituting the above three
pairs of complex potentials int@). Or, equivalently,

phic functions can be expressed as

n—2+2xm

+o o
$1(2)=¢1(0)z+ /31;2 W(A“_AT) z

n—2

Re(2¢y(2) — 2¢(2) — Y (2)}

k)
Ug(x) -

o =Re{2¢(2) +2¢}(2) + Yy (2)} with k=1,2,3 (64)

o) =1m{z¢y(2) + Pi(2)}.

< (n+2)(n+1+2y7,)a?
nm=-p3 2N X

+,312

n=3

—-2n+2
ni2gmin—212 " A2

-n+3 efn+2 )

e
n
at nAt a?(n—-2) A) z

+

(N+2+2x)7,+n

n=1

+oo

~B1>,

n=1

(n+1)(n+2)+2x
(n+2+2x)m+n

-n_\

+ AlZ"
n

ZES]_
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The Peach-Koehler force, which is a measure of the force act-
ing on the dislocation due to its interaction with the inclusion, can
also be derived in terms of the above obtained complex potentials
following the method adopted by Luo and Chigt, Qaissaunee
and Santar¢3]. It is of interest to point out that when the three-
phase composite system is only subjected to remote uniform load-
ings, then stress fields within the circular inclusi®nare coinci-
dent with the expressions for the stress fields derived with a single
sharp interface described by an imperfect interface mes Ru
[14]), and are also coincident with the expressions for the stress
fields for a circular inhomogeneity with an arbitraNtlayered
perfectly bonded interphageee Ry 7]).

4 Application

In this section, we assume that a crack lies on the real axis in
the interval[t,,t,] as shown in Fig. 2. In addition we assume that
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v =0.3,a/b=1/8,t,=3.5a, t,=4.5a under uniaxial tensiomrify.
Figure 4 shows the variation df; (t;) versusb/a and y with
61:2%2, 63: 1%2, V1=Vor= V3:0.3,tl:3.5a, t2:453 un-
der uniaxial tensionr;y. Figure 5 demonstrates the variation of
y 5 k;_r(tl) VerSUSO':X/U;Cy and X W|th G1=20G2, G3=]..OG:2, V1
=v,=v3=0.3,a/b=1/8, t;=3.5, t,=4.5a under biaxial ten-
/ < sion afx,azfy. For comparison, the results calculated based on the
two-phase model with a perfect interfad@rdogan et al{22]) are
also depicted in Fig. 3. A comparison of Fig. 3 with Fig. 3 in Luo
and Cher{23] reveals that whely—x (i.e., perfect interfaceour
numerical results are in accordance with those obtained by Luo
and Chen[23]. Similarly, a comparison of Fig. 4 with Fig. 4 in
Luo and Cheri23] reveals that whey—o our numerical results
are also in agreement with those obtained by Luo and C&&h
Then the analytical solution derived in this paper is verified from
one aspect. From Figs. 3 to 5, we can readily draw a conclusion
that the degree of imperfection has a significant influence on the
stress intensity factor. It can also be found from Fig. 4 that the SIF

is more sensitive td/a when y is decreased. It can be observed

?xeesretrrqg:]eitpsrhnf?iicpeasl ti)trgrflse(?o?;? dg?:ﬁgzletloctrg?:kt\/\'ll'ohgcr)g;ﬂil?iq’tsm Fig. 5 that there appears to be a linear relationship between
’ y : 'YF and ratioo,/ oy, for a fixed x; in addition, we find an inter-

singular integral equations for unknown dislocation den$ty esting phenomenon that, will exert no influence on SIF when
X

are
x=13.1. Figure 6 illustrates the variations kdf(t;) versus crack
location t; and xy with G;=20G,, G3=10G,, vi=v,=v;
=0.3,a/b=1/8, t,=a+t; under uniaxial tensiorar;"y. We find
(65) that the introduction of the sliding interface will increase the po-
tential for the crack to extend when the crack is far away from the
two interfaced”, andI', ; the introduction of the sliding interface
t will retard the crack growth when the crack approaches one of the
J' f(t)dt=0. (66) two circles. We illustrate in Fig. 7 the variations of vertical open-
E ing displacemenﬂuszl(ao;’y) versusy with G;=20G,, G;

For brevity, we omit the detailed expressions #ft,x) and =10G,, v,=v,=v3=0.3, a/b=1/8, t;=2.5a, t,=5.5a under
p(x) in Eq. (65). The above singular integral equations are nuiniaxial tensiono, . We find thatAu, at the points on the left
merically solved based on Gaussian-Chebyshev integration fgertion of the crack will decline with the increment of the degree
mulas(Erdogan and Gupt#21]). Figure 3 illustrates the variation of damage in the tangential direction on the interfiige while
of normalized stress intensity factaiSIF) ki =k;/(0oyy\S), Auy at the points on the right portion of the crack will grow with
wheres is the half-length of the crack=(t,—1t,)/2, att, versus the increment of the degree of damage in the tangential direction
G;/G, and imperfect parametey with G, =20G,, v;=v,=v3 on the interfacd’,.

Perfect
Interface I,

Matrix S, Stipping

Interfa

Composite phase S;

Fig. 2 A matrix crack in the three-phase cylinder composite
model

21O Gk [Priotdi= 2 t,<x<t
11'[__X . (t,x)f(t) —Z—GZWP(X) 1<x<t,

and the single-valuedness condition

1.5 T T T T T T

+ 0.00001
-1
+5

% 100000 (Luo and Chen [23])

solution of the two-phase model
(Erdogan et al. {22])

N \\\
0.5+ Ve -

SIF

G3/G2

Fig. 3 Effects of G3/G, and x on stress intensity factor
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5 Conclusion

The present research analytically investigates the interacti
problem between an edge dislocation and a three-phase cylin
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/o / < 134 NN
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0.05- / / < 100000 N
’/ j/»/, / | N
[ ! I L | | | I 1 L
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t/a
Fig. 6 Effects of t;/a and yx on stress intensity factor
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Fig. 7 Effects of yx on vertical opening displacement Auszl(a(r;’y)

power series method is appropriate to treat the problem. All of the
Bﬂeﬁicients in the Laurent series can be determined in a decoupled
ner. This decoupling strategy will make one successfully

model with a sliding interface. In the three-phase model, the dafR!ve the interaction problem between an edge dislocation and
age on the inclusion-matrix interface and interaction between iﬁ[bltrary number of concentric circular inclusions with Slldlng or
clusions can be simultaneously taken into account. Since the ddpfirfect interfaces in an unbounded medium. In addition, the prob-
age on the inclusion-matrix interface is assumed to be uniforfem of a dislocation in the interfacial zone of the three-phase
then the conventional power series method is still effective; sinedliptical inclusion, which was not solved successfully by Qais-
the three-phase composite system is considered, then only sia&nee and Santaf@], can also be solved by a similar approach
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adopted in the present study. Based on the analytical solutidiol Mura, T., Jasiuk, 1., gnd Tsuchida, E., 1985, “The Stress Field of a Sliding
derived in the present paper, we then investigate a crack in the 'nclusion,” Int. J. Solids Struct21, pp. 1165-1179. _

matrix interacting with the sliding circular inclusion, which is an 1t Jsiuk, 1., Tsuchida, B, and Mura, T., 1987, “The Sliding Inclusion Under
. . . . . . Shear,” Int. J. Solids Struct23, pp. 1373-1385.

!mportant mode ,Of failure ',n composne materlals’ ,to Illus,trate th%lz] Lee, M., Jasiuk, I., and Tsuchida, E., 1992, “The Sliding Circular Inclusion in
influence of the imperfect interface on the stress intensity factor. ~ 5, gjastic Half-Space,” ASME J. Appl. MectB9, pp. 57—64.
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A Cracked Piezoelectric Material
Strip Under Transient Thermal

Y. W. Mai’ g
Department of Manufacturing Enginesring Considered in this paper is a piezoelectric material strip containing an embedded crack
and Engineering Management, or an edge crack perpendicular to its boundaries. The problem is solved for a strip that is
City University of Hong Kong, suddenly heated or cooled from the top surface. The bottom surface is assumed to be zero
Tat Chee Avenue, temperature or thermally insulated. First the transient temperature and the stress distri-

butions in an uncracked strip are calculated. Then, these stresses are used as the crack
surface traction with opposite sign to formulate the mixed boundary value problem. This
leads to a singular integral equation of Cauchy-type, which is then solved numerically.
The numerically results for stress intensity factor are computed as a function of the
normalized time and the crack size. The temperature and the thermal stress distributions
for the uncracked problem are also includdd@Ol: 10.1115/1.1429935

Kowloon Tong, Hong Kong

1 Introduction ture distribution is obtained, the thermal stresses of the uncracked

. . . i blem are evaluated. The perturbation problem is formulated by
Re_cently, plezoel_ectnc materials and structures he_lve recel .L?gng the thermal stresses from the uncracked problem with an
considerable attention due to the potential for designing adaptlg

o X . posite sign as the crack surface traction. The problem is reduced
structures that are both light in weight and possess adaptive col 4 singular integral equation of Cauchy-type, which is solved
trol capabilities. Because of their brittleness, piezoelectric mateHDmericalIy. The results are obtained for various' parameters of the
als have a tendency to develop critical cracks during the manUf?ﬁ'bblem
turing and poling process. '

The problem of a strip with a crack perpendicular to its edges
under thermal stress has been studied by many authof],lan 2 Temperature Distribution

elastic strip with an embedded and edge crack under transiente oropiem under consideration is a linear piezoelectroelastic

thermal stresses was investigated. The cracking in a plate of finite, i \m containing a crack normal to the surfaces of the strip, as
thickness due to sudden thermal transient stresses was considgﬁ%avn in Fig. 1. The crack problem may be solved by superpé)si-
for an edge cracI([Z]).“A cracked thin layer bonded t0 a veryijon That is, one may first solve the thermal stress problem in the
thick substrate under “thermal shock” conditions has been coRpsence of any cracks and then solve the isothermal crack prob-
sidered ir{3]. In [4] an unconstrained elastic layer under staticallyym by using the equal and opposite of the thermal stresses as the
self-equilibrium thermal or residual stresses is studied. Discussgdck surface traction. In the problem considered, the heat con-
in [5] is the thermal stress problem of a functionally graded plag,ction is one-dimensional, a straight crack does not obstruct the
as one of the advanced high-temperature materials capablen@ht flow in this arrangement, determination of the temperature
withstanding the extreme temperature environments, with aggstribution and the resulting thermal stresses would be quite
without an edge crack. . straightforward and the related crack problem would be one of
The mechanical, electrical, and thermal fields are coupled jRode |.
most of the physical problems. Thermal effects could be important| et us start with a one-dimensional thermal conduction prob-
when piezoelectric materials have to undergo high or low temem, The temperature fieldl under consideration is one of one-
perature gradients. Accordingly, the analysis of the fracture pr@gimensional and is governed by
cess of piezoelectric materials could provide information to im- )
prove the design of piezoelectric devices operated in thermal I T(zt)  dT(zb) 1
environments. Isothermal behaviors of piezoelectric materials T2 P a) ' @
with cracks have attracted many research activities in recent years . - - .
([6-13)). Due to mathematical difficulties, thermal effects havt‘—f*"he'rek3 is the 99efﬂuent of thermal conducﬂwtys,the density,
not received high concern. The problem of a two-dimensiongpdcv the specific heat. The corresponding thermal flows are
piezoelectric material with an elliptic cavity under a uniform heat q,=—kgdT/9z. )
flow was discussed ih14]. The limit situation was that the hole
was reduced to a slit crack. In what follows, we are interested in
solving the problem of a piezoelectric material strip under tran-
sient thermal stresses. The strip contains an internal crack or an | b
edge crack perpendicular to its surface. The superposition tech- cMNT
nique is used to solve the governing equations. Once the tempera- _I_ ja_ h

<V
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The initial conditions are specified to be where o (i,j=x,2) and D; are stresses and electric displace-
_ ments, respectively;; , B;, Cj;, &, and €;; stand, respectively,
T(z.0=0. ®) for stress-temperature coefficients, pyroelectric constants, elastic
The following two kinds of boundary conditions areconstants, piezoelectric constants, and dielectric permittivities.

considered: If we now assume that the plate is infinite along thend
. z-axis, (i.e., —x<(x,z) <), free of surface traction and electric
Boundary Condition a charge az=0 andz=h, it may be shown that
T(O)=ToH(1), 4
T(h.t)=0. ®) 0,~0, o,=0, D=0, D,=0, (12)
. and all nonvanishing field quantities are independernt ahd z.
Boundary Condition b By solving £,, andE, from the second and the fifth equations of
(11), in terms ofe,, and T, and then substituting into the first
T(O)=ToH(1), (6) equation of(11), it is found that
dT(h,t)/9z=0. (7) . _
Oyx=C118xx— 14T, (13)

In Egs.(4) and(5), H(t) is the Heaviside function.
The thermal Eq(1) can be solved by means of separate variyhere
ables. Without going into details, the results are as follows:
(C13€ 3371 €31€33)C13~ (€31C33— C13833) €31

Boundary Condition a C11=Cq1—
Y . cu=tn Cas€ aat €3 (1)
2T0 ) mar 22 TO
T(2)=— 2, e Sln(TZ) e Mot 7 (h=2) ~ (C13€ 337 €31€33) N33 (€31C33~ C13€33) B3
m=1 7 Ai=Ni— 2 - (15)
. C33€ 3371 €33
:TOZ i(liefmzﬂ'ztlto)sin¥z. (8) The compatibility condition that needs to be satisfied is
m=1 M
d2g,, /dZ%=0, (16)
Boundary Condition b .
giving
o sinma/2 mar g4 =AZ+B, 17
T(2)=To| 1-4 2 %eﬂmmzﬂmo cosﬁ(hfz) , xx B a7
s 0o=Cua(AZ+B) ~\piT, (18)

©)
wheret,=p ¢ h2/k3. where A and B are unknown constants to be obtained from the
If the plate is infinite(i.e.,h= ) and the temperature and ther-20undary conditions for the plate. For example,
mal flow vanish at infinity, the temperature field is given by the . i the plate is unconstrained along its boundaries, we have

well-known solution h
J‘"axx(z)dz:o, f oyx(2)2dz=0; (29)
0

T(2)=T,erf ( z ) °
2)=Tyerfd| ————
2\(ks/pey)t - for a fully constrained plate,,=0, giving A=0, B=0;
2 % , ds » and if the plate stretches uniformly but does not bend, then
= —Tof (1—e~(ka/re)s gin(s2) < (10) A=0, B is determined from the first one of E¢4.9).
™ 0

In the crack problem under considered the equal and opposite

3  Thermal Stresses in the Uncracked Medium of the stress given by Eq18) will be used as the crack surface

. - traction and the medium will be assume to be under plane-strain
OnceT(2) is known, the stresses and electric displacements gl gitions.

be found from

Ciy Ciz3 O 0 —€3
Oxx Exx Aig
o, Ci3 C33 O 0 —esnl| Nag 4 The Crack Problem
Txzt=| O O Cy —€5 O 28,3 —4 0 T,  The crack problem may be solved by treating the problem as
D, 0 0 e 0 E, 0 isothermal and quasi-static, and by using the equal and opposite
D 15 €1u E -3 value of the thermal stress obtained from Ef8) as the crack
z €3 €3 O 0 €33 z 3 surface traction. The plane piezoelasticity problem requires the
(11) solution of the following equilibrium equations:
|
Ju Ju w P )
Cirg + Cas 7 +(C13+ Ca4) v + (€31t €15 X0z 0
du Pw Pw ) )
(Cag+Cag) oo F+Cas 7 T Cag 7 T €157 + €357 = = (20)
Ju Pw Pw ) PP
(Ezrters) o — €15 7+l 7~ cury 7 €337 =0 )
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subject to the following boundary conditions on the crack faces: Boundary condition(22) requires that

o(02)=0p(z), c=z<b, (21) g(z2)=0, h=z>c, b>z=0. (32)
whereoy(y) is the equal and opposite value give in E48). In the case of an embedded cragkz) satisfies the following
Out side of the crack, the displacement should be continuodgngle-valued condition
Therefore,
Cc
u(0,2)=0, h=z=c, b=z=0. (22) f g(z)dz=0. (33)
Due to the symmetry of the problem with respect to the plane °
x=0, the following conditions should be satisfied: In the case of an edge crack, the single-valued condition is

_ _ g(y)=0 at (x=0,y=h).
702)=0, D,(02)=0. (23) " After substituting from Eq(A5) in Appendix A into Eq.(31),
On the surfaceg=0 andz=h, the traction and electric dis- and by inverting the Fourier integrals we find
placement are considered to be

3 c
T %,0)=0, 0,{%,0)=0, D,(x,00=0, (24) 21 Blnanig‘lf g(r)e'“dr. (34)
n= b

,h)=0, ,h)=0, D,(x,h)=0. 25 . .
%) 7zAX.h) ) (2%) Conditions(23) require that
Equations(24) and(25a) represent traction and electric charge

free boundary conditions. If the strip stretches freely but without 3
bending, the boundary conditi¢@85a onz=h should be replaced 21 D1,G,=0 (35)
by n=
(0 =0, aw(x,h)/ax=0, D,x,h)=0. (2%) 23: o 6o )
Using the displacements and electric potential solutions shown =

in Appendix A, the stresses and electric displacements for the

piezoelectric strip are given as ltlrom Eqs(34)—(36), G, can be determined as

6

Cc
2 ) —je1 i &r —
sz(x,2)=;fossinSXEl Co e ds Gp(é)=i¢ bn(é)fbg(r)e dr, n=123 (37)
e

where the coefficientb, (n=1,2,3) are given in Appendix C.
i By applying Egs.(26)—(28) and (37) to the homogeneous
_— &lhn 3
+er 2 fﬁxfe‘ | "D1nGre™ ' dé, (26) boundary conditiong24) and (25a), and using the well-known
integral[15]
6

2 oo
TAX2)= — fo scossme,l ComeS'm?F 1 ds exp(s)\nx)— = 52?2(552)
0 n

3

1 (= , btai
+2 5 J gD, Goe tds,  (27) O
n=14¢7T ) _»

dé§, Re(\,)<0,

C

i
5 [ 0 Y CuneFrn=g < | g(Dfi(sndr. (39)
Dz(X'Z):—f SCOSSX Y, Came™n?F ds m
™ Jo m=1 6 )
| C
59 (= E ClmFmZZ_J g(r)fa(s,r)dr, (39)
+ o f gelfhwD, G dg,  (28) m ™SI
=~ 2 . 3n~n ’
n 6 I .
5 (= 6 2 Cone™"F =5 _gnfs(sndr, (40)
(X, 2) f SCOSSX Y, CameSMm?F ds
0 m=1 6 :
1 (= _ > ComFm=5— f g(r)fs(s,r)dr, (41)
+2 5o f £elMD,Gre™ d¢, (29 = s
n=1 — 6 I .
6 SAph _
2 (* > Camen'F f g(r)fs(s,rydr, (42)
Dx(x,z):;f ssinsxY, Ceme™mF ds = m2ms °
0 m=1
6 .
3 i
1 (- . CaF r)fe(s,r)dr, 43
+3 o0 | eeningee s o P CULEE “3
n=1 —
- . . . where the coefficient,,, (m=1,...,6), aregiven in Appendix
where the coefficient€;, andDj,, (j=1,....5), aregiven in - p 5 the case of boundary conditid@5b) considered, Eq(40)

Appendix B.
The six unknowns foiF,,, and three unknowns faB, will be
determined from the boundary conditiof&l)—(25). To do this,

has a different form as follows:

i
we introduce a displacement discontinuity funct@(z) along the E AjpeShm th—z— 3(5 ryg(r)dr, (44)
cracked plane m=1 S
(02)/9z=g(z). (31) wheref, is shown in Appendix D.
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The linear algebraic Eq$38)—(43) can be used to determinedfor the edge crack problem, whefg, is the Chebyshev polyno-
all the remaining unknowns,,,, (m=1, ... ,6), interms ofg, the mial of the first kind anday,a,, ... are unknown constants.
results are Applying Egs.(55—(56) to Eq. (54) and following the proce-

dure outlined in4], for the embedded crack problem the singular

Fm:i fccm(s,r)g(r)dr, m=1,....6, (45) integral equatior(54) is reduced to

b o< o
. o . ! Tn(r)
where the coefficients,(s,r) are given in Appendix E. AOE anun,l(E)JraE a, h(r,z) —_2de oo(2),
The as-yet-unknown functiog is then determined by applying n=1 n=1 -1 V1=t
(29) to crack surface boundary conditi¢®1) (57)

c whereU, is the Chebyshev polynomial of the second kind.
. [hi(z,r)+hy(z,r)]g(r)dr=o4(z), c=z=b, (46) Similarly, for the edge crack problem the result is

where the kernels; andh, are given by i a Ao loglB(Z)| T.@+ Ao (1 To(N—Tn(@) -
i = io N\ 7 Ji-z " T ) 1 1-T(r-32)
hl(z,r)=—2j A4(s,z,r)ds, 47)
ne +Cflh< LIS (58)
- Z,r) ——=dr | = 0y(2),
1 (= . 2) v )T
ho(zr)=5—| A (&€ ™7dg, (48)
2m ) .. where
with 1122
Ai(S,21)= D Cameen(Sr), (49) 1-V(-2)12
m=1

The linear algebraic equatios7)—(58) can be solved by trun-
3 cating the series and using a collocation techniéé. For the
A (&)=— E Dby, . (50) embedded crack problem, the stress intensity factahead of the
n=1 crack tips az=b andz=c can be defined and calculated as

It can be shown that the value df,(¢§) is A,(&)=sgng)Ay,

where A, is a constant which depend only on the material prop-  k(p)=(\/2[b—2z] B —A _qyn
erties. From Eq(489) it is found that (0)=(v2[b=2]);p-7(2) O\/anzl (=1, (60)

hy(z,r)=———. 51
A2N= " 1) K(©)=(V2Z= D), c+0(2)=~AoVaS, an.  (61)
=
The singular integral equation fgrcan be derived by combining
Egs.(46)—(51), the result is For the edge crack problem the stress intensity factor is obtained
Ag (¢ 1 . as
- Eg(r)errf hi(z,r)g(r)dr=0¢(z), c=z=b, £
b b
52) K(0)=(V2[z= D)zt == Ao\, 2. (62)
=
which can be reduced to standard form by setting
c—b c+b 6 Numerical Results
(z,r):T(z,rH > (53) Suppose the piezoelectric material strip undergoes a sudden
temperature increase or decrease on the top surface, the bottom
The result is surface is assumed to be free of temperatbmindary condition
Ae (11 1 a) or thermally insulatedboundary condition o The numerical
_Of ﬂ](r)dr+af hy(z,r)g(r)dr=oy(2), results of the temperatuig(y,t), the thermal stressy,(x,t), and
m ) 4=z 1 the stress intensity factdk have been obtained for a centrally

_ cracked strip, and for an edge cracked strip with various crack
1=z=-1. (54)  lengths. The following material properties is used:

Note that in this problem timeenters into the analysis through

_ (0] 2 _ (0] 2
oo only, and Eq.(54) must be solved for each value df C11=74LX 10N/, €35=8.36< 10N/n’,

separately. C1o=4.52< 10'°N/m?,
5 Thermal Stress Intensity Factor C1a=3.93¢ 10N/, C4y=1.32<10°N/Y,
The integral equatiofb4) has a Cauchy-type kernel. The crack- N11=0.621X 10°PN/m?K,  \33=0.551x 10°N/m?K,

tip behavior can be characterized by a standard square-root singu-
larity. Consequently, the solution of EG4) may be expressed as  e5,= —0.160C/mM, e33=0.347C/m, e,5=—0.138C/n3,

0

1 € 1;=0.826x1071%C/Vm, e 33;=0.903x 10" °C/Vm,
g(r): \/—ﬁE anTnmv (55)
1-125=1 B3=—2.94x 10 6C/Kn?.

for the embedded crack, and Time is represented through the dimensionless Fourier number

1 < defined by

J—Z a,Ta(1), (56)

1-Tn=0 Fo=t/to=tks/pc,h?. (63)

g(r)=
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The Temperature and Thermal Stress Distributions. As-
sume the top surface of the strip is heating from initial
temperature zero td, suddenly, the calculated temperature dis-
tributions are shown in Fig. 2. The two kinds of boundary condi-
tions on the other surface give the same temperature distributions
at the early time. As a result, the stresses at the early time have the
same values for the different boundary condition on the other
surface. These stresses are plotted in Fig. 3. Note that in the heat-
ing problem the temperatufieis positive. As time goes to infinity
the temperature varies linearly frofiy on the top surface to zero
on the bottom surface for the case one. For the second kind of
thermal boundary condition, as time goes to infinity the tempera-
ture approached, throughout the strip. In the problem under
consideration, wheR is larger than 0.05, the two boundary con-
ditions give different temperature and then thermal stress distribu-
tion that are plotted in Fig. 4.

Plotted in Fig. 5 are the variations of thermal stress with time at

SxdAnTo

0.0

0.01

t/15=0.05

0.2

04 0.6 0.8 1.0

Zh

different position of the strip. The figure clearly shows thatt asFig. 3 Transient thermal stresses distributions in an un-
increases there is a general peak for each curve. The peak valkiagked strip

of the thermal stress for various positions are reached at some
time after the thermal shock. After that time the stress decreases
with time. The thermal stress,,(x,t), approaches zero when
goes to infinity, means that the thermal stress occurs only in tran-
sient state. Since the thermal stresg, is statically self-
equilibrating, large compressive stress occurs near the surfaces,
and the tensile stress appears inside the strip.

The Embedded Crack Problem. Suppose the crack is lo-
cated in the center of the strip. As mentioned above, if the strip is
heated suddenly on its surface, large tensile stress will occur in-
side the strip. Accordingly, the crack will open up and the stress
intensity factor will be positive. Figures 6 and 7 show, respec-
tively, the thermal stress intensit§(c) for the upper crack tip and
K(b) for the lower crack tip. From the figures it may be observed
that for a given crack length generally first increases, goes
through a maximum, and then decreased axreases. As was
expected, the stress intensity factor approaches zero whees
to infinity.

The peak values of the thermal stress intensity factor for diffe,
ent crack length are depicted in Fig. 8. TKevalues are normal-
ized such that they do not depend on crack leragtkt is found
that the stress intensity factors have lager values at the crack tip
near the hotter surface than those at the tip near the cooler surface.

The Edge Crack Problem. If the top surface of the strip is
cooled toT, suddenly, the strip will undergo tensile stresses near
the surfaces. Some numerical results of the thermal stress intensity
factor are shown in Figs. 9—11 and Table 1 for different boundary
conditions on the other surface. Similar to the embedded crack
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IE'ig. 4 Transient thermal stresses distribution in an uncracked
strip (continued )

1.0
—— BC.a -0.05
—————— BC.b
0.8
_________ -0.10
0.6 . =05 0.00 0.05 0.10 0.15 0.20
S N
= 0.2
0.4 3 thto
0.1
0.05 Fig. 5 Transient thermal stresses against time for different
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0-0 problem, the stress intensity factor occurs at transient state. The
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Fig. 2 Transient temperature distributions for different bound-

ary conditions (B, C)

Journal of Applied Mechanics

steady thermal stress intensity factor is zero. Figure 11 plots the
peak values of the thermal stress intensity factor with crack

length. The results are also tabulated in Table 1. It can be shown
that the peak value of the thermal stress intensity factor increases
with crack length to a maximum value and then decreases. If we

JULY 2002, Vol. 69 / 543
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Fig. 6 Transient thermal stress intensity factors K(b) at the
embedded crack tip for different crack length (b+c=h)
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Fig. 7 Transient thermal stress intensity factors K(c) at the
embedded crack tip for different crack length (b+c=h)
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Fig. 8 Peak values of the thermal stress intensity factor at the
embedded crack tips for different crack length (b+c=h)

assume a pre-existing crack, its length being sepast will start
propagating when the thermal stress inten&ifc,) reaches the

K(c,) again reaches the fracture toughniss.

The results shown in Fig. 11 indicate that the thermal stress
intensity factor with increasing crack length goes through a maxi-
mum with the region of crack instability bounded by two values
of crack length. This behavior is in contrast with the Griffith cri-
terion for constant load, where crack instability is bounded by one
value of crack length, crack propagation being catastrophic when-
ever the crack length exceeds this value.

7 Conclusions

In conclusion, both an embedded crack and edge crack in a
piezoelectric material strip under transient thermal loading have
been investigated theoretically. The top surface of the strip under-
goes a sudden heatirtfpr the embedded crack problemr cool-
ing (for the edge crack problemTwo kinds of boundary condi-
tions on the bottom surface of the strip are considered, i.e., zero
temperature and zero thermal flow on the bottom surface. For the
geometry and thermal conditions under consideration, the thermal
stresses and hence the thermal stress intensity factors occur only
at transient state. The steady values of the thermal stress intensity
factor are always zeroes. At the early time of heating or cooling,
the two boundary conditions on the other surface give the same
results. A large difference is observed when heating or cooling
time becomes large.

0.08
§ 0.06
&
= 0. 04
0
Y oo
0.00 : : :
0.00 0.05 0.10 0.15 0.20

tty

Fig. 9 Transient thermal stress intensity factors against time
for the edge crack problem
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fracture toughnesk,.. The crack will propagate continually atFig. 10 Transient thermal stress intensity factors with crack
least to a new length; , where the thermal stress intensity factotength for the edge crack problem
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Fig. 11 Peak values of the thermal stress intensity factor for
the edge crack problem

Table 1 The peak values of thermal stress intensity factor for
an edge cracked strip with different crack length under sudden
cooling

K(C)/\y ToVh
c/h Case 1 Case 2
0.005 0.0458 0.0458
0.01 0.0568 0.0568
0.05 0.0705 0.0705
0.1 0.0660 0.0660
0.15 0.0581 0.0581
0.2 0.0492 0.0492
0.3 0.0324 0.0324
0.4 0.0186 0.0186
0.44 0.0140 0.0142
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Appendix A

Due to the symmetry with respective xa=0 plane, the solu-
tions to the governing Eq420) for displacements and electric
potential can be expressed in terms of unknovmgs) and
G, (s) in the following form:

2 o0
(u w ¢)T=;f (A SiNSX Apy, COSSX Ag, COSSX) "
0
XF esxmzds+i
m 2

X f (B1n Bay Bay)TGueltheié7dg, (A1)

where\,,, and\, are eigenvalues, whileA},Asm,Azm) and

2
Ci1— C44)\m (Cl3+ C44))\m (e31+ elS))\m Alm
2 2
(CiatCadNm  Cahp—Cas  €33\p—€15 |§ Aom( =0,
2 2 A
(es1te9hm €\ —€15 €11~ €33\, sm
(A2)
i 2 Is| s 7
Cas— C1ihy i— (ClS+ CaNp i Y (e31+ €19\
sl 2 2
S (CiztCaa)\p C33— Caghpy €33~ €15\ p,
8] 2 2
e (€1t e, €33~ €15\, — €33t €Ny
Bln
BBn

Since the stresses and electric displacements must vanish as
approaches infinity, the eigenvalugeg, (n=1,2,3), are selected
such that

Re(\,)<O0. (A4)
There are six roots fox,,, and three roots fok, . In terms of
these eigenvalues, the solution to E2Q) is
2.Q (-
ux,z)=— >, f SINSXA e m?F ds
Tm=1 Jo
[€[Npx —iéz
27-rn f e B,,e7'¥*G,d¢, (A5)

6
2 o
w(x,2)= — 21 J' COSSX Ao m?F [ ds
m= 0

f elédM¥B, e~1e7G d¢, (A6)

27Tn
2.9 (-
7)== J’ COSSX AgeS*m?F 1 ds
Tm=1 Jo
[€NpX —igz,
. 277” fe B, '¢°Gd¢, (A7)

whereF,, and G,, (m=1,...,6n=1,2,3), can be determined

from the boundary conditions.

Appendix B
Cim=CasrmA1m— CaaPom™ €15A3m
n= T 1C44B1n+ Caa SGME)NBon+e15Sgn€)N B3,
Com=C13A1mT 3\ mAam™ €33 mAzm
n=C13SgN &)\ nByn—
Cam=€31A1m T €33\ mAom—
D3n=e31Sgn &)\ nB1n—
Cum=C1A1mt Crah mAom+ €31N mAgm
Dan=C11Sgn(&)AB1n—

Csm=e1sAmA1m—€1582m T € 11A3m

D,

D, iC33Bon—i€33B3,

€ 330 mAsm

ie3gBoy i€ 3Bs,

ic13Bon—i€31B3n

(B1n:B2n,B3,) are eigenvectors of the following characteristic

equations:
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Appendix C 3w léln,

D..b i§r(7h+r)d
b;=(D 1,053~ D13Ds52)/A ()= 2 _LENESE T n® ¢
b,=(D51D13—D11Ds3)/A _ 8
b3= (D1Ds,~ D)/ =72, ReDabie™™ M)

=
A=B1)(D1:D53~D13Ds52) +B1aAD51D 13~ D11Ds3)

L :
+B13(D11D5,—Ds1D1) fe(s,r)= Z 2T s 2D3nbne'§rd§

Appendix D 3
— i SriN,
1(5 I’)— 2 52)\ s 5 Dlnb elg( h+r)d§ m nzll RqDSnbne /)\n)

8 __23: = ssgn\)\, Gié(r )
=7ri2 IM(D 1,0,e3M 0/ ) fs—n:l v Banbne d¢
iér 3
fo(s,r)= Z ﬂcfz)\ s 2Dlnbne§d§ :—wiz IM (B b,esM~ "/ n)
n=1
3
i Ny . - . L
_”'gl Im(D 1pbnes "™/ \ ) Obviously, f; and f5,, i=1,...,6, arepure imaginaries. When
evaluating the above infinity integrals we have used the theory of
= |En, . residues.
-3, [ Ao e
3
=—7i >, ReDypbnes"Mo/x )
n=1 Appendix E
= éN, The coefficientx,(s,r), (m=1,2,...,6), are

fa(s.r)= E 7y g7 Danbre'd

3 (C1 €2 C3 €4 Cs5 Co) =G H(fy f, f5 fy f5 fo)T,

=7 D, REDpb,eS"™ /N )
n=1 where

M Clles)\lh Clzei}\zh Clses)\3h C14es}\4h Clses)\5j Clees}\eh'
Cu Cp Cis Cua Cis Cis
. C21es}\lh szes)\zh C23e5)\3h C24es)\4h Czses)\5h Czees}\sh
Ca Ca Cas Coy Cos Cas
CgleS)\lh Cszes)\zh C33es}\3h C34es}\4h C35eS)\Sh C36es}\6h
L Ca1 Cs Cas Cas Css Css J
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Comparison of the Two Formulations sentation. Hence, it is a matter of uncertainty to claim equivalence
: : of the two plate formulations in actual computations.

of W-U_—V and w-F in Nonlinear Plate Under a Galerkin representation, we compare modal equations

AnalySIS for the first four symmetric modes of a simply-supported plate

obtained under the two plate formulations. This calls for further

clarifications. First, why use the Galerkin representation? For

J. Lee simply-supported and clamped plates, we have previously carried
Air Force Research LaboratofyyASS), Wright-Patterson out the Galerkin procedure by symbolic manipulation software,
AFB, OH 45433 such as, MATHEMATICA™([3]), though others could have been

used as well. This permits us to readily verify equality of math-
ematical expressions, aside from the bookkeeping aid in tracking
myriad expansion terms arising from the geometric nonlinearity
([4]). Second, why a simply-supported plate? It is known for a
In a moderately large deflection plate theory of von Karman an@ctangular simply-supported plate that plate modes can be con-
Chu-Herrmann, one may consider thin-plate equations of eithgtructed by a product of simply-supported-beam modes which are
the transverse and in-plane displacememtsy-v formulation, or - simple sine functions, along each plate coordinate. Here, by plate
the transverse displacement and Airy function, w-F formulatiomodes we mean the plate bending modes, which are the eigen-
Under the Galerkin procedure, we examine if the modal equatiofgnctions of biharmonic operator. The last and crucial issue is,
of two plate formulations preserve the Hamiltonian propertyiow are we to compare the-F andw-u-v formulations? In a
which demands energy conservation in the conservative limit @fcent dissertation work, Gevel&] has attempted such a com-
no damping and forcing. In the w-F formulation, we have showparison on a clamped plate by visually examining numerically
that modal equations are Hamiltonian for the first four symmetrigenerated trajectories of the transverse displacement under the
modes of a simply-supported plate. In contrast, the correspondingo plate formulations. Unfortunately, his outcome is inconclu-
modal equations ofv-u-v formulation do not exhibit the Hamil- sive for there is apparently no frame of reference for comparison.
tonian property when a finite number of sine terms are included ®ince plate equations are embodied by the existence of Hamil-
the in-plane displacement expansions. tonian, the sum of kinetic and straipotentia) energies([1]),
[DOI: 10.1115/1.1458556 modal equations must also preserve the Hamiltonian property at
any level of modal truncation. Hence, a metric is established for
comparison of the plate formulations.

e-mail: Jon.lee@wpafb.af.mil

1 Problem Statement 2 Synopsis of Plate Equations for a Moderately Large

In the plate theory of von Karman and Chu-Herrmair), one Deflection
considers not only the inertia and plate bending due to transversé-ollowing Chu and Herrmanfi], we begin with the force bal-
displacementv, but also a first-order effect of the in-plane dis-ance equations integrated across the plate thickness in the usual
placementss andv, giving rise to membrane stretching. This isCartesian coordinatexy,z) with displacementsu,v,w)

w-u-v formulation of a moderately large deflection plate theory 2 2

([2]). However, when the inertia of in-plane motion is neglected in ‘9_N>< %' —oh (9_“ INyy Ny h (7_1’ @

a thin plate, one can replace the two in-plane equations ford X ay P2 “ox ay P2

v by a compatibility relation for the Airy functiorr, hence the

alternatew-F formulation. Although the two plate formulations P*My aZMXV ‘92MY i( ﬂ) + i(N ﬂ)

are completely equivalent in theory, they are not in practice. This ax? IXay ay?  ax\ Xox ay '\ Yy

is becausew, u, v, andF are all reduced to a finite degree-of-

freedom representation by whatever the means used for computa- J N ﬂ + i ﬂ
Yoy | ay | Yox

. . o . g X +—
tion, i.e., the finite difference, finite element, or Galerkin repre- X
Comtibuted by the Abplied Mechanics Division ofiE A . Only the inertial terms are retained in the right-hand sides, and
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF :
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- excluded are the external forcing, rotatory effects, and transverse

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct. 2,Shear forceqsee Eqs.(l)-(54)—(1)-(60) of Chia [2]). Although
2000; final revision, Nov. 18, 2001. Associate Editor: R. C. Benson. they are general statements about the forces exerted on a plate

J*w
=ph—7. @
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segment of thicknedsand mass density, the phenomenology of 3 Two Formulations of the Plate Equations
plate theory enters through the stress resultaNisN, ,N,,) and
bending and twisting momentsM(,,M, ,M,,). For the von
Karman-Chu-Herrmann plate equation, we have

To proceed further, it is more convenient to express equations
of Section 2 in a dimensionless form by introducing new variables
denoted by an overhead bar,

h
Ny=——7(extrey), Ny= (vextey), — 1 W i D
t 1w ’ -7 XY=y T W= (W)= (UU)hz =tz Vo
X
\ Eh )
- . _
V21w Y (Ny,Ny Ny = (N . Ny Noy) 755

where 2

rLy
:(Uklub m) 4h2 (9)

2
X

(exsey exy) = (ex:8y 8x)) 12

(Ukaerm)
Ex=

3u+1 aw\? _au+1 aw\?
ax  2lax) Y oy T2\ ay

du v F=F

=—+—+
Exy ay  ox

IW Iw 1D’
ax ay’

wherer=L,/L,. We point out that¢,v) are also scaled by the
E is Young’s modulus of elasticity and Poisson’s ratio. Further, factor (h/LX)

%W 92w Pw 92w The w-u-v Formulation. After introducing(9) into (8), we
My=-D O,,—Xer VWZ , My=-D Vol + Y drop all the overhead bars in the resulting equation
2w a*w 1 d*w o2 a*w Ly azw)
Myy=—-D(1-v) — xay" i ox* ax2ay? ay*
5 5 12/ Pw Fw oW
whereD =Eh*/12(1— v°). =—|Ny—oz +2rN,y——+1°N,—~|. (10)
Chu and Herrmaniil] have also presented total energy of a ™ X Ixdy dy*

plate with sided., andL, as sum of the kinetic energy We must now remember that not orflj0) but all the subsequent

equations are also henceforth dimensionless. The dimensionless

1 L, (L . . )
Uk=§phf fy(u2+vz+w2)dxdy, 3) (6) becomes
00 N, Ny, Ny, N,
where the overhead dot denot#git, and the strain energy which ax ' ay =0, IX +rW:0’ (11)
for convenience we split into bending
where
Y oM —&2W+M—82de a g 1w\ 1 (9
:__ u W W
o Woxay Y ay? | O Ny= +Vr—v+— —| +Zwr?
X ay 2 2 &y
4
2
and membrane stretching N ZV‘?_UJ”’?_UJF EV a_W 1 ‘7_W 2
Yo Tox o gy 2 2" ay
1 (Y (Ly
Um=§f0 fo (Nyex+ Nyyeyy+Nysy)dxdy. (5) and
def he Kinei - N 11 0u+0v W IW
We now define the kinetic potentiall=U,—U,—U,,. By Xy= 2( 2] r(7y Ix ax )

Hamilton’s variational principle, it is standard to rederii¢ and

(2) from stationary variatiorsI1=0 with respect to §u, v, éw).  Writing out (11) in (u,v) yields the in-plane displacement equa-
Hence, the energy conservation is fully embodied by plate Edfns

(1) and(2). 2 2 2 2 2
For a thin plate, i.eh/L,<1, one may neglect the inertia (), (9_”+d 29 rdr Y v [ WIW 20N W
hence ax2 T gy T2 axay ax oxZ T2 gy axay
IN, 9N,y INyy  ONy aw P*w
+ =g, 2+ L=o. 6 + =
ax ay o9x oy (©) dyr ax ayz (12)
This br@ngs about am_azing simplifications. Fir®) is satisfied by q 9%v L 20 v e d2u rdr ow g?w +d oW P
a functionF(x,y) defined by 1552 r ayz of &xay 1r ay v 2f X axay
9°F 9°F J°F 2
= - - &W W
Nx &yz ’ Ny ¢9X2 ’ ny (9X0y . (7) 0’

vl

whered;=(1—v)/2 andd,=(1+v)/2. Compare(10) and (12)
with Eq. (2.199 and(2.15a,b of Geveci[5].

Second, by virtue of6) a half the terms involving, ,Ny ,N,,)
drops out of(2), hence

2w Fw W 2w Underu=v=0, (3) reduces to the dimensionless kinetic energy
ph v + D I + 2 2.2 + -7
at X X4 d 1 .
.o == f f w2dxdy. (13)
Fw Jw F?w 2JoJo
+ +Ny—>. L .
=Nz ax? 2nyaxay Ny ay? (8) Also, (4) and(5) in dimensionless form are
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U 1 (1(Y/o*w
°727% ), Jo L\ ax?

In this note, we restrict ourselves to the immovable plate
edges; i.e.u(x,y)=v(x,y)=0 for x=(0,1) aty=0 and 1, and
y=(0,1) atx=0 and 1. In thew-u-v formulation, we introduce

22w\ 2 the following in-plane displacement expansions:
+2(1—V)r2( ) dxdy, (14)
Jxd
y =3 3 bk ),
(1-v) i=2,46j=13,...N
=—J J’ € +2vaxs +s +— 5 s%)dxdy,
o= 2 2 b0 (y). (21)
(15) i=13,...N j=2.4,6
where With ¢;(&) =2 sin(w¢£) we see that the immovable plate edge
au 1/ow\? o 1 [ow\? conditions are fully guaranteed. Also, one summation(aif is
e=—+ —(—) , Ey=T—+ —r2<—) , and limited to the indices(2,4,6 consistent with(20), whereas the
gx 21 oX ay 2 \ay other summation is truncated at the upper lilitOn the other
U o W IW Pand_, forbtheN-F formulation it is customary to express the Airy
Eyy=F—+——+r——. unction by
dy X X dy )
Cyx ny
The w-F Formulation. By virtue of dimensionles§7) F=- > 2 +(1-17)
N2 I°F N I°F \ J°F (16)
=r—z, Ny=="3, =" X f, qcogpmx)cogqmy). (22
X ay Yo oox xy axay p(:o'z'id;' qodsh. . P gpmx)cogqmy). (22)
. . p=dq
we express$8) in w andF instead, . .
presss) Under expansiof20), it turns outf , ;=0 for p, >6 so that(22)
92w 1 9*w 9*w azw is a truncated double series. It is fair to say that the controversy of
ra v +2r2 W+ v w-F formulation arises from imposing the boundary conditions
for F in an average(integra) sense([6,7]). First, the cosine
122 (Pw °F  Pw 9°F  *w 9°F expansion is justified in  that [3(5?F/axdy)y—ody
A\ o2 ,9_y2_2 IXdy IxXdy * ay? axZ) an =f(1)((92F/ax(9y)y:0,1dx=O imply zero shear stresses around the
) o ) plate edges in an average sense. Second, zero in-plane displace-
together with the compatibility relation ments around the plate edge are expressed by the following inte-
. e L pre . (92F o Pw\2 2w Pw gral constraints: 2 2
CXE T2 ey r? Y =(1-v9) oxay praryat T rza F_Vﬁ 1(ow\? dxdy=0,
(18) oJol@=vA)\" ay? T ax®] 2\ ax 23)
Again, (17) and (18) are comparable with Eq$2.21) and (2.23 11 1 9°F 92F IwW
of Geveci[5]. In contrast to(15), the membrane strain energy is f f {ﬁ(—z— Vrz—z) ( ) }dxdy—
now expressed iff instead, 0 Jo [(1=¥9) [ ox ay ay
6 101/ 2F\2 PF azF &ZF frorr_l which Cy andC, are evaluatgd. M_uch has been argued to
Um:ﬁj’ J —| —2vr’— justify the integral boundary conditions imposed Brisee Refs.
T (1=v%) Jo Jo [\ X ax* 33’ ay? [6-9)), and hence we have nothing new to add here. We shall,
P, however, adopt here a utilitarian view to judge the efficac{2@j
o IF a posteriori by the consistency of modal equations that are de-
+2(1+wv)r dxdy. 19 ¢ .
axay rived from it.

4 Modal Equations Under the Galerkin Representa- 5 Two Plate Equations forw and F

tion For thew-F formulation, we first evaluate fror®23)

In theory, the two plate formulations are completely equivalent w2 o 2 9 2 o 2
in that by (16) one can freely interchange in-plane displacements ~ Cx=— % ((1+wr9ag+(1+9vrag s+ (9+wvriag,
with the Airy function. It is, however, not so in practice. This is
becausey, v, w, andF are approximated by a finite degree-of- +9(1+ Vrz)a§3),
freedom representation by whatever the means that one uses for 72 '
computation, i.e., the finite difference, finite element, or Galerkin Cy=——((r2+ ,,)ailJr (9r2+ u)ai3+(r2+91/)a§ N
representation. To test the interchangeability argument under 2

Galerkin representation, we consider the first four symmetric plate +O(r2t v)ai,g)-

modes Next, by inserting(20) and (22) into (18) we expresd , , in the
w= 2 D Ay m(Den)en(y), (20)  quadraticay
n=h3m=13 foo=(af,—2ay 18, 5+ 983231~ 2a3.9))/8r %,
where ¢;(&)= 2 sin(w¢ are the orthonormalized simply-

supported beam modes. It is indeed fortuitous Hatx) ¢, (y)

are the plate modes of a simply-supported plate. We point out that
the clamped-beam modes cannot form clamped-plate mades
(20). This does not, of course, mean that clamped plate is not
amenable to the Galerkin procedure; it is that results are some-
what more complicated to present than the simply-supported plate
case.

Journal of Applied Mechanics

fo4= (21,181 31 925 183,9)/16r %,
foe=(afs+9a35)/72r?,
f2,0:r2(ai1_ 2a; 1831192y 5(a;3—2a33))/8, . . .,
fo4= —36r%az,a;35/(36+16r2)2, fg¢=0,
fpq=0

and

for p,q=8.
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They may be compared witblp,%in Table 1 of Levy{8] by letting 6 Three Plate Equations forw, u, and v

aj,j— (Wi /h), fpq—4byq/ER"andr=1. Instead off , ,, we evaluatey; ; andc; ; by inserti i

; ) p.q: i i.j by inserting(21) into

_ With Cy, Cy, andf,, o, we can sort out front17) modal equa- (1) “afterward, the modal equations are derived fré) just as
tions for a; ; in an oscillator form by defining column vector |\ -"\o o Gone so fronfl7) in the w-F formulation. They are

=(01,92,05,04)=(31,1,31,3, 331,333 again put in oscillator forng24) with the sameC as in Section 5,
4+Cq+K=0, (24) but nowK =(2,,7R,,R3,%,) has the following components:
M e o . . =l + aboda+ adaucd + adofas + adasgts + adadas
0 (1+9r2)2 0 0 + 70,05+ 250,05+ a501020a+ 1010304+ 11050304
1| o 0 (9+12)? 0 +ay 0103} +{B105+ B303+ B3A304+ Bi0504+ B5U3da
0 0 0 811+r?)? + B3Gas + B70a0: + Bedi,

is the stiffness matrix. The diagon@él testifies tog,(X) @m(y)

— 2.3 2.2 2.2 2 2 2 2.2
being the plate modes. And, cubic amplitu@®lumn vector K Ro={aidrt aztiz+ @3U10s + 23610205+ 5010+ @601

= (ky,k2 ks, ks) has the components + 7010504+ 33+ @d0205+ @550, + af10205}
Ky =4K103+ 350202+ 2149102+ 3K6020a+ 2K1101020 +{B7d105+ B3935+ B305+ B3010204+ BE20504
+ K120503+ 2k 150105+ K130205+ 2K9010204+ 2K10010304 + B20304+ B320105+ B39305+ B34},
+ Kaglastlat 22, Re={adqi+ a3aia,+ 030,05+ adoias+ adqud.0s+ adaias
ko= K503+ 2k140502+ k110703 + 2K 15010203+ k130103 + a30:0,04+ 30505+ @303+ a3 q3a.+ 30503}
o Kg050at K1gl1Calla + 4Ka03+ 200203+ 317030 +{ B33+ B30105+ B30205+ 830504+ B2010304
2K 1600203, + 3020504+ B3105+ B50205+ B5AS}
k3= KeQ>+ k110202 + k120105 + 2150503+ 2K15010203 Ry={ 1070, + a50703+ @301 0203+ 40504+ aq3 + g5,
+ sacliGat K1a0o0la+ oozt 43+ 3Kg03da + 33+ aga3da+ @80t +{B1ad+ B30.03+ Biadas
+ 2179502, + B40105+ B20205+ Bad1020a+ B7010304+ B302050a
Ka= ko030 + k100503 + k15010203 + 2K100504+ K703 + B30192+ B105+ B11a303)

+ 2K160504+ KgO3+ 26170504+ 4K405,

wherek, (n=1-20) are relegated to the Appendix.
Let us now identify the Hamiltonian fof24). With the conju- Table 1 Numerical coefficients for K =% under N=7, r=1, and

gate p=q the inertial term gives rise to kinetic energy, »=\0.1

=1p"p, and the stiffness matrix generates bending strain energy

1T . a-(n=1-12) 21.31+-8.95/127-8.95/23.56+70/127/-70/—47.93/
Hy,=30 Cq, where the superscrift denotes the transposed. We ™" —47.93/257/163.47
then deduce the following membrane strain energy: a?(n=1-11) —3/127/11.73+139.8/-70.21}-23.86/259.45/751.53/
4 4 4 4 3 3 3 585.46/-680.04/1679.93
H. = k1074 kola+ K202+ k405 + K + K + Kk a3 (n=1-11 —3/11.73/~70.21/127+139.8/-23.86/259.45/585.46/
m= K10 3 202 z% 404 2 50102 6C211Q3 70204 2 n ( ) 1Bl 680.04/169.03
T + + + + 4n=1-9 —24.1/-24.1/259.89/163.7228.32/1689/
Kgl30a+ Kod10204+ K1007030a+ k11070203 F k12010503 @h ( ) 598 25/1689/1715.69
+r 24 e 202+ k0202 + s 0202+ 1e1-0202 BL(n=1-8) —1.11~1.11/-1.39/2.36/2.36/6.49/6.490.28
162 radite T fasids™ Kagdzfa T rardsda B (n=1-9)  —3.13-4.03/-18/4.01/9.41/7.34/8.52/3.860.8
+ K1891020304 + K190+ K209503, B3 (n=1-9) —1.8/-3.13/-4.03/7.34/4.01/9.41/8.52/3.86D.8
B (n=1-11) —0.52/1.37/7.29/1.37/7.29/18.26/18.26/8.42/
by integratinng‘zlf kidg; and eliminating all redundant quartic —0.34/-1.94/-1.94

terms([10]). From total HamiltoniarH (p,q) =H,+H,+H,,, we
can rederivg24) directly from the Hamilton equations of motion

([11) Table 2 Numerical coefficients for  dU,,/dq="R under N=7, r
=1, and »=,0.1
. H IH
G=g75 Pi=7 5 (25 4l(n=1-12) 21.32/8.94/127.1+8.94/23.43+69.97/127.1469.97/
I |

—47.89/-47.89/260.5/164.03

, - , i a?(n=1-11)  —2.98/127.1/11.72¢139.95/-69.97/ 23.94/260.5/
hence (24) is Hamiltonian. Note that being Hamiltonian is a%n( ) e 26/556. 621 682 17/1695 46

stronger dynamical property than energy-conserving. In facts \_,_ 19y —2.98/11.72/69.97/127.1+ 139.95/-23.94/260.5/

the existence of Hamiltonian is anticipated from the energy" 586.62/752.26+682.17/1693.46
discussion in the beginning of this note. Though tedious, we (n=1-9) —23.94/-23.94/260.5/164.03/227.39/1693.46/
can showH(p,q) is really the total energy),+U,+U,,. That —227.39/1693.46/1732.87
is, (13) reduces toU,= 3(a2 +a2+42 142, which is H B:(n=1-8) —0.94/-0.94/-1.46/1.67/1.67/9.57/9.570.14

' 1K 2L F13TEe T 983 oo 8 Bi(n=1-9) —2.82/-4.83/~1.61/3.34/15.99/8/9.57/4.26/2.06
(14) becomesUp=73((1+r9)%a;;+(1+9r9)%ais+(9+r9)%as, pin=1-9) —1.61/-2.82/-4.83/8/3.34/15.99/9.57/4.26/2.06

+81(1+r2)2a§3) which is nothing butHy, and finally Uy, g4 (n=1-11) —0.49/1.67/8/1.67/8/19.13/19.13/8.52).43/6.18/6.18
=H,, by (19).
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We observe the following. First, ea®k has 20(=6!/3!3!) cubic

,Bin, hence we shall present only their numerical values evaluated

terms, corresponding to the combinations with repetitions @b r=1 and v= J01. ForN=7 the values Ofain and Bin are

forming 0,90, out of g. Second, the cubic terms in eagh are

summarized in Table 1. Beyond the huge array of numerical data

split into two curly brackets. In the first curly brackets, the termgresented in the table, the point of contention is that one cannot

with coefficientcvin have the same cubic pattern askin and we

call them Type | cubic terms. The remaining terms in the seco
curly brackets with coefficieng,, are called Type Il cubic terms.

For a givenN, there are%(NJr 1) components each fdw; ; and
Cij So that solution of(12) requires inverting a matrix of 3
+1)X3(N+1), which for instance is 86 for N=1. It is there-
fore not feasible to present the analytical expressionsfoand

deduceH,, directly from K=%R. To see this, for instanch}
4152 in Table 1, anda! and 182 are the coefficients of3q; .
Hence, the modal equations for are not Hamiltonian in the
w-u-v formulation or, put it more informally, cubic vectdét =%
is not energy-conserving when we truncéé) at N=7. Now, to
infer energy-conserving cubic vector we first evalubltg from
(15),

Un,=5.337+188.0195+ 188.01y3+ 433.2215— 2.9850,— 2.981505— 227.3930, — 227.3930, — 23.94150,0.4— 23.94¢ 10050304
+11.72970,05— 699710505 — 69.9%1,0,05 + 63.557q5 + 6358703+ 846.7315q; + 846.721305 + 260.51,0,0504
+82.01305 +293.319503— 0.949,95— 0.949,93— 1.619305 — 1.610,03 — 0.4930 + 1.670: 050, + 1.6 70504+ 7.9%450 304
+7.999,030,+ 9.574,0,05+ 9.570, 0305 + 4.260,0505 — 0.149, 03+ 2.069,03 + 2.069505,

Table 3 Percent deviation ranges in the numerical coefficients
of cubic terms

N Type | cubic terms Type Il cubic terms
7 (—1.37,0.7% (—140%,94%
11 (—0.32%,0.19% (—78%,12%
15 (—0.13%,0.077% (—42%,4.3%

19 (—0.063%,0.039% (—23%,2%
23 (—0.036%,0.022% (—14%,1.1%
27 (—0.022%,0.014% (—9%,0.7%
31 (—0.015%,0.009% (—6%,0.46%
35 (—0.01%,0.007% (—4.3%,0.32%
7 11 15 19 23 27 31 35
100 100
50 50
< 10 10
§
g 5 5
8
8
[m)
1 1
0.5 0.5
0.1
7 11 5 19 23 27 31 35
N
Fig. 1 Approach to the energy-conserving cubic vector. - [ B

maximum positive deviation; -- @®-- maximum absolute negative

deviation.

Journal of Applied Mechanics

with (21) truncated also al=7. Then, by(25) JU,/dq;=R; are
components of the energy-conserving cubic vector and their val-

ues ofa, and B, are summarized in Table 2. We can therefore
quantify departure oK=% from the energy-conservingU,,/
dUn,/dg="R by comparinga;, and B,, in Tables 1 and 2. It is
found thata;, differ only slightly in small percent range-1.37
percent, 0.7 percentwhereas the values @8, deviate greatly
within a large percent range 6140 percent, 94 perceniThese
deviation deviation ranges are entered into the row entries of
Table 3 forN=7 under Type | and Il cubic terms, respectively. As
summarized in Table 3K approaches the energy-conserving
U /9q asN is incremented by 4. Finally, & =35 thea,, have
almost attained the energy-conserving values, yet the percent de-
viation range ofg,, is still more than+1 percent.

7 Concluding Remarks

We began by presenting thin-plate equations of a moderately
large deflection theory under the-u-v and w-F formulations.
The main issue here is to ask if Hamiltonian property survives
through the Galerkin procedure by which modal equations are
derived for the first four symmetric modes of a simply-supported
plate. The modal equations are indeed Hamiltonian inwhE
formulation, whereas the corresponding modal equations of
w-u-v formation are not and hence do not conserve the plate
energy. In Table 3 the departure from energy conservation has
been quantified by the percent deviations in Type | and Il cubic
amplitude terms. As the worst-case scenario, we plot in Fig. 1 the
percent deviations of Type Il cubic terms oWér7—35. By ex-
trapolating the maximum absolute negative deviation out to 1 per-
cent, we findN~55 as a conservative estimate. In other words,
the expansions fou andv must include at least 84 sine terms
each to assure less tharl percent deviation in the coefficiefit,
from the energy-conserving cubic vector.
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Appendix
The Constantsk,, (n=1-20).

K1:§(4I’2V+ (r*+1)(3—1?)),
3
K2=Z(36r21/+(81r4+ 1)(3—17)),
3
K3:Z(36r21}+(81+ rH(3—1?)),

243
K4:T(4r21}+ (r*+1)(3—12)),

K5=*3(1*V2), K5=*3I’4(1*V2),
K7=—243%1—1?), Kkg=—2431-1?),
=_ 4 - _ .2
Kg=—2Tr 1+(1+4r2)2)(1 ?),
o1 r4 12 _4srf(1-07)
K10= = +(4+T)z( -v9), U= 52
S B S 1-v?
a2 8 " w7 Taarary?/ )
= 24r4(9+ . 1-v2
T ot " e ez

—124(9+1+ 2 1-v?
12 gt ot e g arnz/ ()

+3((L+r20)+9r3(r2+v)),

(e 1-22
s~ 120 3 gt iz T aas ez ()

+3(9(1+r2w)+r3(r2+v)),

O e ! 1-2°
2 4t @rerr? T taar o) |

+27((L+r20) +9r3(r?+v)),

K16= 27

s . S ! 1-v2
AU PR P A TR AT TR T

+27(9(1+r120)+12(r2+v)),

_124(9(1 1) 225 1 1 o
1™ et T G e |

243
K19= 7 r4

1
@+r22 T (1rard?

)(1—v2)+27((1+r2v)

+r2(r2+v)),
17 625 1 1 )) 5
R LA TRV E AN TEr T

+3(9+r2v+9r%(r2+9v)).

Koo= 244’4

References

[1] Chu, H.-N., and Herrmann, G., 1956, “Influence of Large Amplitudes on Fre:
Flexural Vibrations of Rectangular Elastic Plates,” ASME J. Appl. Me@l,,

pp. 532-540.

[2] Chia, C.-Y., 1980,Nonlinear Analysis of PlatesMcGraw-Hill, New York,

Chapter 1.

[3] Wolfram, S., 1999The MATHEMATICA Bogkith Ed., Wolfram Media, Wol-

fram Research, IL.

552 / Vol. 69, JULY 2002

Copyright © 2002 by ASME

[4] Lee, J., 1999, “Using Mathematica for the Galerkin Representation of Non-
linear Plate Equations,Proc. 6th Pan Am. Cong. of Appl. Mechol. 7, eds.

P. B. Concalves, . Jasiuk, D. Pamploma, C. Steele, H. I. Weber, L. Bevilacqua,
Rio de Janeiro, pp. 821-824.

[5] Geveci, B., 1999, “Flow Induced Nonlinear Vibrations of Rectangular Plates,”
Ph.D. dissertation in Mechanical Engineering and Mechanics, Lehigh Univer-
sity, Dec 13. Lehigh, PA.

[6] Bolotin, V. V., 1963,Nonconservative Problems of the Theory of Elastic Sta-
bility, MacMillan, New York.

[7] Librescu, L., 1975The Elastostatic and Kinetics of Anisotropic and Hetero-
geneous Shell-Type Structuré$oorhoff, Lyden, Chapters 1-7.

[8] Levy, S., 1942, “Bending of Rectangular Plates With Large Deflections,”
NACA Report No. 737.

[9] Dowell, E. H., 1966, “Nonlinear Oscillations of a Fluttering Plate,” AIAA J.,

4, pp. 1267-1275.

[10] Lee, J., 1986, “Free Vibration of a Large-Amplitude Deflected Plate—
Reexamination by the Dynamical Systems Theory,” ASME J. Appl. Meg3).,
pp. 633—640.

[11] Goldstein, H., 1980Classical Mechanics2nd Ed., Addison-Wesley, Reading,
MA, Chapter 8.

An Infinite Plate Weakened by
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An infinite plate weakened by doubly distributing cracks is studied
in this paper. Two loading cases, the remote tension and the re-
mote shear stresses, are assumed. Analysis is performed for a
cracked cell cut from the infinite plate. It is found that the eigen-
function expansion variational method is efficient to solve the
problem. The stress intensity factor, the T-stress, and the elastic
response are evaluated. The cracked plate can be equivalent to an
orthotropic medium without cracks. The equivalent elastic con-
stants are presented[DOI: 10.1115/1.1458558

1 Introduction

Multiple crack problems in plane elasticity were investigated by
many investigatorg/1—3|). A doubly periodic crack problem is a
particular one in this field, as was studied(j#,5]). In the fore-
going studies, the obtained results are limited to evaluate the
stress intensity factor and some discrepancy has been found be-
tween the sources. Also, the effective elastic properties of solids
with many cracks were investigatdf6]). Recently, the doubly
periodic cracks were modeled by a superposition of many rows of
collinear cracks. The derivation was rather complicated and only
the normal loading case was conside(gg8]).

In this paper, an infinite plate weakened by doubly distributed
cracks is studied. The plate is subjected to the remote tension or
the remote shear stress. In both cases, the boundary value prob-
lems can be reduced into a complex mixed one for a cracked
rectangular cell. It is found that the EEVMigenfunction expan-
sion variational methadis efficient to solve the problen{9)).

Yhe particular advantage of EEVM is that the relevant computa-
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 12,
2001; final revision, Nov. 22, 2001. Associate Editor: J. R. Barber.
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tion does not depend on any boundary collocation scheme which 2G(u+iv)= K(ﬁ(Z)—(Z—_)_d)/(Z)— w(2) @)
is necessary in the boundary collection method. Generally, if the

boundary collocation method is used, the boundary collocatigghereG is the shear modulus of elasticity, are:(3—v)/(1+v)
scheme will influence the final results. For both normal and shegj; the plane stress problem withbeing the Poisson’s ratio.
loading cases, the stress intensity factors and the deformation rem the following analysis, an infinite plate with doubly periodic
sponses are evaluated. From the obtained results it is shown {akks as shown in Fig. 1 is first considered under the remote
the cracked plate can be equivalent to an orthotropic mediyghsionss, =0, o, =p. The relevant elastic constants are denoted
without cracks. by v, Go, Eo (Eo=2Go(1+ 1)), and v,=0.3 is used in this

paper. In the analysis, it is convenient to cut a rectangular cracked
2 Analysis cell from the infinite plateFig. 1(a)). Clearly, the boundary con-

) . ) dition for the cracked rectangle will be
Based on the complex variable function method in plane elas-

ticity ([10]), the stressesuy , oy ,0,) and the displacementsiv)
are expressed in terms of two complex potentia{g) and w(z)
such that

V=U=%0p, 04y=0 (—bs<xsb,y=xh) (3a)

U=u==*up, 0y,=0 (x==b,—h<y<h) (30)
oxto,=4 Red'(2)

(1) wherev,, anduy are two unknown values to be determined later.

oy—ioy,=9¢'"(2)+(z-2)¢"(2)+ »'(2) Clearly, the conditions in E¢3) are a complex mixed one.
? V=V,
p y
c, =0
At tptyt )t -

= /s /= = =

== A ]

Kal
e e . . e =

> > > > > >
xq =
Il
o
><C?|
It
o

R0 2 R « \2:’ >

V==V T V=V
b b
2h ,

GX = 0 l——._—l—————————> Gx = 0

|22 X
> —
‘u=-u,
c, =0
{b)
Fig. 1 An infinite plate with the doubly periodic cracks, (a) the cracked rectangle in tension loading,  (b) the

cracked rectangle in shear loading
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To solve the problem, we introduce the following complex pofable 1 The calculated nondimensional stress intensity
tentials([9)): factors and the T-stresses

2M 2M A;(h/b,a/b) values(see Fig. 1 and Eq9))

d(2)= > Xd¥(2), w(2)=2, Xo®(2) 4 b 01 02 03 04 05 06 07 08
=51 = h/b=04 0966 0900 0853 0847 0.886 0977 1.140 1.431
h/b=06 0993 0977 0967 0977 1.019 1.104 1252 1513
where h/b=08 1.000 1.003 1.013 1.038 1086 1168 1.304 1.549
h/b=10 1.003 1012 1031 1062 1113 1194 1325 1566
W(2)= M (2) = VP—222%2  (1=k= h/b=15 1004 1017 1039 1075 1128 1209 1340 1.601
$r(D) =0T 2)=V"~az (1<k<M) (5) hib=20 1.004 1017 1.040 1076 1127 1216 1344 1.570

k) — Kk — 2(M—=k)—1
pM(2)=-N(2)=22M7L  (M+1<k=2M) B,(h/b,a/b) values(see Fig. 1 and Eq9))
and X are the unknown coefficients. As shown previougB]), a/b 01 02 03 04 05 06 07 08
the displacements, strains, and stresses derived from the compi=0.4 0.846 0.636 0.436 0.278 0.167 0.090 0.045 0.019

hb=06 0883 0743 0597 0461 0342 0242 0161 0.097
potentials(z) and w(z) in Eq. (4) satisfy all governing equa- \,p—5's  g'goa 0779 0.662 0546 0437 0.335 0.241 0.156

tions of plane elasticity and the traction-free condition on thg/jp=10 0.898 0.793 0687 0581 0477 0376 0278 0.184
crack faces. h/b=1.5 0.900 0.800 0.699 0.599 0.499 0.399 0.299 0.200

It is proved that, for the following mixed boundary conditiond/b=2.0 0.900 0.800 0.700 0.600 0.500 0.401 0.301 0.200
for a cracked region[9])

A,(h/b,a/b) values(see Fig. 1 and Eq18))

oijnj=p; (on Cp) ui=u; (on Cy), (6) amp 01 02 03 04 05 06 07 08
h/b=0.4 1.025 1.088 1.170 1.258 1.345 1.431 1.535 1.703
whereC, is the portion of boundary where the tractions are givem/b=0.6 1.011 1.043 1.090 1.147 1212 1.292 1405 1.607

6
and C, |s the portion of boundary where the displacements afgh=0.8 1.007 1.027 1.059 1.102 1.160 1239 1361 1.575
applled and the actual solution can be obtained from the stati g;ig 1882 ig% ig% 1832 iigg i%g i%gg iggg
ary condition of a functionall defined as h/b=2.0 1.004 1.017 1.040 1.075 1.128 1.205 1.324 1531
=f fA(eij)dF—f Euids—f oiin(ui—u)ds (7)
5 Cp Cy
whereA(e;;) is the strain energy anl is the region of integra- 1 Vo V1o 1 1
tion. Simply using the following stepsa) substituting all the &= O E, Ty ey=*E—0'x+ % YT g%y
quantities derived from the complex potentials in E4). and the 1 2 1 2 12 (10)
boundary values in Eq6) into Eq. (7) and (b) letting the func- _ _
tional II be a stationary value, we can construct a system of algahere there is a relation as follows:
braic equations for the undetermined coefficients (k _
=1,2,...2M) in Eq. (4). This method for evaluating the stress (B2v1)/(Byvz)=1. (11
field for a cracked region is called EEV]. From the assumed loading condition and the numerical solution

The actual solution for the problem can be obtained in the fatrentioned above, we have
lowing way. Under the conditions,=1 andu,=0 in Eqgs.(3a)

and(3b), the obtained stresses are denotedoly,, oy, and =0, 0ya0=P, &x av:ﬁ ey au:v_b (12)
, ; = =

P
Oxy() - Similarly, under the conditions,=0 andu,=1 in Egs. wav

(3a) and (3b), the obtained stresses are denotedhys), oy ,
and o,y . The loading conditions along the boundary in Fig.
1(a) lead to

1.00 T

b b
Ubf Uy(l)(x,h)dx+ubf (Ty(z)(x,h)d)(:bp
0 0 (8)

h h
Ubfo ox1y(by)dy—+ Ubfo Oy(2)(b,y)dy=0. 0.80 —

Thus, two unknown valuesy, anduy, can be determined from the N
above equations, and the final solution is obtainable. In case
usingM =8, the calculated results for the model | stress intensil

! 0.60 —
factor and the T-stress can be, respectively, expressed as

1
K,=A,(h/b,a/b)p(ma)? T=-B,(h/b,a/b) mp
9) 0.40 —|

The calculatedh,(h/b,a/b) andB4(h/b,a/b) values are listed in
Table 1. It is found that the obtained results coincide with th .
previous oneg[5,7]). For choosing the value dfl, we performed
computation for the cases M=3,4, ..., and thevalue ofM is
determined when the stable numerical results are obtained. 0.20 T | ' 1 ! | ! |

Clearly, from the deformation response in telirection, the 0.0 02 0.4 0.6 0.8
cracked rectangle can be modeled by an orthotropic medium wit a/b
out the cracks. It is known that the constitutive equation in the
orthotropic medium takes the forfhl1]) Fig. 2 Normalized elastic constant C,(h/b,alb)(=E,/E,)
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where the subscriptdv” means that the relevant quantity should 1.00 —
be understood in the sense of average on some portion of

boundary. |
Substituting Eq(12) into Eq. (10) yields
hp hu, 0.80 —
Ez—v—b, V= T (13)
The calculatedE, values are expressed by C, 4
E,=C;(h/b,a/b)E, (14)
0.60 —

and the calculate@, values are plotted in Fig. 2.

Since the crack does not influence the relevant stress-strain
lation in the x-direction, we haveE;=E, and v,,=v,. Clearly, .
the results obtained fdE,, v,; andE (=E;), v1(= ry) may not
satisfy the relation Eq(11) exactly. In fact, in the range fdu/b
and a/b used in the numerical example, the ratios
(E,vi9)/(Eqvyy) are varying within the range from 0.9990 to
1.0013. This is to say that the proposed assumption coincides w -
the physical situation very well.

Since the relatior{1l) is satisfied almost exactly, by using the
relations E;=E,, vi,=vy and Eqg. (14), it follows wvy/vq
=C,(h/b,a/b). Therefore, from the functiorC,(h/b,a/b) we 0.0 0.2 0.4 0.6 038
can also obtain information for the reduction of Poisson’s ratio. a/b

The response of the periodic cracks to the shear loading can be
investigated in a similar mannéFig. 1(b)). In this case we as- Fig. 3 Normalized elastic constant ~ C,(h/b,alb)(= G12/Go)
sume that only the remote shear traction is nonzero such that
(o

0.40 —1

0.20 T T T T T T T 1

xy:q~
Similar to the tension case, the boundary conditions for the
cracked cell are The nondimensional values, values are plotted in Fig. 3. From

= — _ — Figs. 2 and 3 we see that, for the same valuek/bf and a/b
=u==*u,, =0 b=x<b,y=*h 154 : ’ . '
. Up, oy=0 (=b=xsby==h) (%) -~ 0 /b) is generally lower thas,(h/b,a/b). That is to say
v=v="v,, 04=0 (x==*b,—h<y<h) (150) the reduction of rigidity in the normal loading case is higher than

. one in the shear loading case.
whereuy, anduvy, are two unknown values to be determined by 9

b
f ayy(X,h)dx=Dbq

0 @6) 3 Conclusion
h For an infinite plate with periodic cracks, the elastic response
. oxy(by)dy=ha. for any cracked cell to the external loading can be obtained. The

eigenfunction expansion variational method is an effective way to
In this case, the eigenfunction expansion form &.is still used solve the cracked cell problem with finite dimension. The sug-
with the following components: gested method can provide the accurate result for the stress inten-

sity factors and the elastic response with relatively less effort.
()= (2)=iZ2—a%z% 2, (1<k=M) Y P Y

N (2)=—0W(z)=iz2M" 01 (M+1<k=2M).

7
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Gqo= q b + _b (20) Internally Cracked Plate by Using Variational Method,” Eng. Fract. MetH,,
12 h ' b pp. 387—-394.
L [10] Muskhelishvili, N. I., 1953 Some Basic Problems of the Mathematical Theory
Similarly, the calculateds,, values can be expressed as of Elasticity, Noordhoff, Amsterdam.
[11] Lekhnitsy, S. G., 1963Theory of Elasticity of an Anisotropic Bodkiolden-
G1,=C,(h/b,a/b)G,. (22) Day, San Francisco.
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Nonlinear Time-Dependent when the temperature-dependent material properties are confined
. . to some specific expressions. The original nonlinear time-
Thermoelastic Response in a dependent differential equation of heat conduction is first linear-

i i i ; ized by the Kirchhoff transformation. By utilizing the Fourier and
Multllayered AnISOtI’OpIC Medium Laplace transform techniques, the general solutions to this linear-
ized heat conduction and thermoelastic problem for layers with
T.-C. Chent monoclinic properties are then derived. The flexibility/stiffness

e ; matrix method is then adopted to obtain the complete solution of
e-mail: ctcx831@mail.ncku.edu.tw the entire layered medium by introducing the thermal and me-

Mem. ASME chanical boundary and layer interface conditions. As a numerical
illustration, the distributions of time-dependent temperature and

S.-J. Hwang thermal stresses in a laminated anisotropic slab subjected to a
uniform surface temperature rise are presented for some stacking

C.-Q. Chen sequences of fiber-reinforced layers. Moreover, the effects of

temperature-dependent material properties on the distributions

. . . . of temperature and thermal stresses are also calculated and
Department of Mechanical Engineering, National Cheng discussped.

Kung University, Tainan 701, Taiwan, R.O.C.

) ) _ .2 Governing Equations and General Solutions
A time-dependent nonlinear thermoelastic problem of a multilay- o
ered anisotropic medium with a certain specific form of SUPPose a layered slab, as shown in Fig. 1, composell of
temperature-dependent material properties in generalized plafi@er-reinforced layers is deformed under the state of generalized
deformation is analyzed by flexibility/stiffness matrix technique pfane deformation such that no normal strain occurs in the
the article. The closed-form general solutions of temperature, di¢:direction and all field variables are functions of coordinates
placements, and stresses can then be obtained in the Fourier &l imet only.
the Laplace transform domains by using the technique of Kirch-

hoff transformation. The effects of temperature-dependent mate- T=T(x,z,0), (1a)
rial properties on the distributions of temperature and thermal
stresses are also calculated and discussed. u=u(x,zt), (1b)
[DOI: 10.1115/1.1458555
v=v(X,z,1), (2c)
w=Ww(X,Zz,t) (2d)

1 Introduction . )
) . . . whereT is the temperature field; and v, andw represent the
Time-dependent thermal and mechanical analysis of a”'SOtrOB'i%placement components in the, z and zdirections

multilayered medium has attracted increasing attention over th%pectively.

past few decades due to its wide applications. This note is mainlyrhe temperature field satisfies the transient-state nonlinear heat
concerned with nonlinear time-dependent thermal stress problegs,quction equation

of a multilayered anisotropic medium with temperature-dependent

material properties. Besides the nonlinear and transient character- 9 [~ T J [~ JgT aT
istics, the inherent heterogeneous and anisotropic nature of lay- &(kll(T) &) + E(k%(T) E) =p(T)c(T) T 2)

ered composites in both thermal and elastic behaviors makes the

analysis of such materials very difficult and complicated. Conse- ~ ~ S - .
quently, even for a nonlinear heat conduction problem with lin¥nerek;;(T), i,j=1,2,3 are the coefficients of heat conductivity,
early temperature-dependent material properties, the analytical Yich are temperature-dependent, in the structural coordinates of

lutions are only confined to the cases in a homogeneous sinfl§ Medium as shown in Fig. 1. ,
layer (Halle [1], Peletie[2], Suzuki et al[3], Ozisik[4], and Tao The relations between heat fluxes and temperature gradients are

[5]) or two-layer slab(Chang and Payng6]). The methods of

flexibility/stiffness(Thangjitham and Chdi7], Chen and Jan[8], ~ ~ 0 _ ﬂ
and Chen et al[9]) and transfer matrixBahar and Hetnarski Ox ku(T) - kaoT) X
[10]) are very efficient analytical matrix approaches and have Ay = ~|<12(-|-) ~k22(T) 0 0 3)
been successfully developed to solve the problems of multilayered q ~ JT
medium by the investigators abovementioned in recent years. Ex- z 0 0 Kaa(T) ~

isting literature reveals that the nonlinear transient thermoelastic
problem of a multilayered anisotropic medium with temperatur%\-’

: . here qx, d,, and g, are the heat fluxes along, y, and
dependent material properties, however, has seldom been so“z“étfection, respectively.

by an analytical approach. Most of the investigations are devote he Kirchhoff transformation is then adopted by introducing a

to the numerical studyNoor and TeneK11)). In this note, the ction, U, which is called the equivalent or effective tempera-
nonlinear time-dependent thermoelastic problem of a multllayer?éfe defined as

anisotropic medium subjected to thermal and/or mechanical loa
ings with temperature-dependent material properties under the

o
state of generalized plane deformation is dealt with by the method U= f Kia(T) dT (4
of a flexibility/stiffness matrix. Exact solutions are obtained only T, K110

*To whom correspondence should be addressed. Where~kijo is the material conductivity coefficients at reference

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- temperatur'eTo. . . . .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 8, After using this transformation, the nonlinear transient heat

2001; final revision, Oct. 5, 2001. Associate Editor: L. T. Wheeler. conduction Eq(2) becomes a more convenient form as follows:
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T=T,+Ty

5 _x
1 ’<._>12a (/

T=T,

Fig. 1 Configuration of N-layer anisotropic medium

U 9 [ (ke aU] [ pc) U - Pu -~ Pu -~ v -~ P -~ =  Pw
—t —| | ~=|— = ~—|— —— + +Css—> +Cusr— + + —
ax* oz (kn) 9z (kn at ®) Caggye + Casgzr + Coaguz + Cargrr +(Cast Cad) 57,
where p and ¢ denote the density and the specific heat, respec- -3 ‘9_V (100)
tively. 80 5x
The heat conduction coefficients of material are assumed to be
linear functions of the temperature as follows: ((~: z ) %u ((~3 z ) v c J*w c W
- - 137 Cs5) - +(Caet Cys) = -+ Co5-5 + Caa——>
kij — kij0[1+ ml(T_TO)]- (6) 0Xodz 0Xoz X 0z
-~ -~~~ oV
Therefore,kss/k1=K330/K119 and the relation betweed and T :3305 (100)

can be obtained:

m, 5 whereaij(i ,j=1~3) denote the elastic stiffness constants; and
U(x,y,2)=T(x,y,2)—To+ 7[T(x,y,z)—To] . @) B B _ ~

_ B10= Craa1101 Croa 00+ Craarazet Cree1oo (11a)
Moreover, the equations of heat flux@ can also be converted

into the following equations in terms &f: Bz0=C13110% Costt oo+ Casttzzgt Caett120 (11b)
~ dU ~ dU ~ dU ~ o~ ~ o~ ~ o~ ~ o~
Oy=— k“W’ Oy=— klZOW! g,=— kgaoE. (8) Beo= C1sa1101 Coet 200t Castazot Cos120 (11c)
Consequently, it is obvious that E() becomes linear either —(T—T )+ My 2
for steady-state problems or for time-dependent problems in case V=(T-To) 2 (T=To)" (110)

the thermal diffusivityk,,/pc, is independent of the temperature. . ) )
In this note, the problem studied is only confined to the conditiog(')t Cﬁn t\J/e_sTeeg_that 'r':nziml‘ th%” U=V; moreover, ifm,
that the term ofky;/pc, is also temperature-independent. The, ! thenV=T. Since the heat conduction equation contains no

. = } élastic energy term, and the inertia is neglected in the momentum
thermal expansion coefficients of material; , are also assumed balance e Sgtions ,these analyses ma gbe in general, referred to
to be linear functions of the temperature as follows: d Y y y be.n g y

as weak coupled thermoelasticity in thermal stress litergBioe
ay = ao[ 1+my(T—To)] (9 leyand weinef12). = -

To solve the linearized field Eq$5) and (10a) to (10c), the
wherea;j is the thermal expansion coefficients at reference terfrourier and Laplace transforms are applied over the variables
peratureT. andt. The transform pairs for an arbitrary functig(x,t) are

Under the condition of generalized plane thermoelasticity thaefined as
equilibrium equations of a given layer expressed in terms of the

displacement components and temperature can then be rearranged_ * . 1 ([~_ »
and reduced to the linear forms expressed as g(s,t)= f_xg(x,t)e'sxdx,g(x,t)z 7 f_xg(s,t)e *ds
Enig +655i;l +616ﬁ_22 +645(9_212) +(Cys+ Css) (92_W 02
ax 0z ax 0z axdz B - B 1 (urie
o g (s)= L g(s,e Pdtg(st)=5— Lfiw g*(s,p)e”dp

:,310& (109) (120)
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where an overbar denotes the Fourier transformed quantityl)th layers, respectivelyR, is the interlayer thermal contact
a superscript represents the Laplace transformed quantity; armesistance, which is defined as the reciprocal of interlayer thermal
s and p are the Fourier and Laplace transform parameterspnductanceh between thekth and &+1)th layers, i.e.,Ry
respectively. =1/h. For a perfect bonded interfadgy is equal to null, and the
In the Fourier and Laplace transform domain, the governirtgmperature distributions become continuous between two adja-
equa.ti.ons for the thermOG'aStiCity, qu.%)—(l(x)), under the cent surfaces' i_eukfzuzjl; U"G andU:’ represent the trans-
condition ofm; =m, can be arranged and rewritten by a system gfrmed equivalent temperature on the upper and lower surfaces of
linear nonhomogeneous ordinary differential equations expressgd multilayered medium, respectively.
as follows: By denotingg} =q} * andq},,=qy,~ the transformed trans-
dza* dZ* _ verse heat fluxes on the upper and lower bounding surfaces of the
M gz +M e +Mgy* =y (13a) multilayered medium, respectlv_ely, art_th: ar =g, K
. =1,2,..., \N—1), the common interfacial transverse heat fluxes
where ¢* (s,z,p) ={u* (s,z,p)v* (5,2,p)W* (s,2,p)}" is the dis- between thd_(th a_nd K+ 1)th layers, the successive appl_icga_tions
placement vector in the Fourier and Laplace transform domaff: the equations in Eqs16a)—(16d) lead to the global flexibility
Mi(s,p), i=1,2,3, are the 83 symmetric matrices which are matrix equations for th&-layer medium written as
functions of elastic stiffness constants and transform parameters _ -
andp; and the vectois}; (s,z,p) is related to equivalent tempera- FLOY +F105 =U} (174)
ture fieldU* (s,z,p) having the form _ _ _
(5:4) having FLAE + (it P RO 2 2=,

I,/IS(S,Z,p): *iSB]_()U*(S,Z,p) k=12, ... (N*l) (17b)

— d— _ — .
isﬂeow(s.z,pwaod—ZU*(s,z.p)]. (130) FYAN+Fafiea=— UL (170)

Consequently, it is easy to solve H4:3) to give the displace- The above equations can also be expressed in matrix form as
ments and stresses in the transform donggi). _

Similarly, under the condition that the field variables and their Fg*=U* (18)
first derivatives with respect tovanish ax— o0, and the initial
value is zero, the heat conduction of Ef) can be expressed aswhereF is an (N+1) X (N+1) symmetric global flexibility ma-

. = trix with half-bandwidth two and is the given function of thermal

U N pcp+s kll) U*=0 (14) properties, the thickness of each layer and transformed parameters
9z° T

p ands; g* is the global vector containing the unknown interfacial

k33

L . . transverse heat fluxes in the transformed domain, i.e.,
Consequently, it is easy to solve Ed4) to give the equivalent — — —

temperature field in the transform domain as 1010z - 'a".\‘Hl}’ and U™ is the vector containing the trans-
formed equivalent surface temperature and zero elements.

U*(s,z,p)=H; cosl{kz)+H, sinh «z) (15) The stiffness matrix equations of moment balance can be for-
h H. i—192 th K tants to b mulated in the_ same way b_y establishing the relations between
where Hi(s,p), j=12, are the unknown constants 10 D&regses and displacements in the transform domains on the upper
evaluated from the proper boundary conditions amd .4 |ower surfaces of each layer. By using the boundary condi-
=sV(pcp/s?+Kkyp)/kss It is noted that the variablesandp in  tions of applied tractions and/or displacements at the upper and
the above equation are regarded as parameters. When the Laplagelower surfaces of the multilayered medium, the continuity

transform parametep=0, thenx:s\/knfk%, and this case re- conditions of transformed normal stress;,, transformed shear
duces to the condition of steady-state. The transformed heat fluseessesr}, and?;Z, as well as the continuity conditions of trans-
are then obtained by taking the Fourier and Laplace transformsfefmed displacementg)*, v* and w*, a system of algebraic

Eq. (8) and using Eq(15). equations can be formulated and expressed as

3 Flexibility and Stiffness Matrix Formulation K% =f*+1% (19)

The flexibility matrix equation of heat conduction can be for- . . o
mulated by establishing the relations between equivalent tempefdiereK is a 3N+ 1) x3(N+1) symmetric global flexibility ma-
ture and heat flux in the transform domains on the upper aH¥ with half-bandwidth Six and is the given function of elastic
lower surfaces of each layer. For an imperfectly bonteldyer stiffness constants, the thickness of each layer and transformed
medium with interlayer thermal resistance subjected to arbitraprameter ands, 5* is a global vector containing the unknown
temperature variations on the bounding surfaces, the therrdigplacements in the transform domain, i.e.,
boundary and interface conditions are prescribed as follows:

H E TS EETE ok Tix s
0r = U (168) {iwiulvTiwzuzv3 .. IWR 1 UN 10N 1)
1 U
o= (16b) f* is a vector of transformed traction forces applied on the surface
and zero elements, and is a vector related to equivalent tem-

— - perature.
=ﬁk(Uk+1_ k ) k=12,...(N=1)  (16c) The solution procedures are to solve the @) to evaluate the
_ _ heat fluxes and the equivalent temperature first and then to deter-
Uy =uy (16d) mine the displacements and the stresses by(E2). Moreover,
— — the inversion integral of Fourier transform with respect to Eq.
whereUg ~ andUj,"; are the transformed equivalent temperaturgl 2a) is evaluated by numerical integration based upon trapezoi-
on the lower(—) and upper(+) surfaces ofkth and k+1)th dal rule, while the inversion integral of Laplace transform for Eq.
layers, respectivelygy ~ andqj,"; are the transformed transverseg(12b) is numerically carried out by Fourier series expansion de-
heat fluxes on the lower and uppet) surfaces ofkth and &k veloped by Durbir{13].

— =

Ak
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Fig. 2 Distributions of (&) temperature T, (b) distributions of normal stress
0, (€) distributions of shear stress 7, (d) normal stress o, at time instant
t=2 min. without interlayer thermal resistance (6=30 deg)

4 Numerical Examples and Discussions
Thermal and mechanical boundary conditions of

These equations imply that a uniform temperature Tiges im-
osed in a region of & on the top surface of the laminated me-
ium, while the surfaces otherwise remain the original tempera-

[0 deg/90 degd/ — #]5 balanced symmetrically laminated slab arg

ure Ty. Moreover, all the surfaces are free of traction.

prescribed as follows:

Therefore, the equivalent temperature distribution on the top

Tu+To;  |x|=<a surface of the slab becomes
TI ()= To; otherwisel (208)
TR =To; |x|<o (200) . T+ 275 [x<a
N 0 Ui (x)=Uy(x)= 2 - (2D)
ols(x)= ()= () =0; |x|< (20c) 0; otherwis
oy (X)=1%; () =147 (x)=0; [x|<oe. (20d) Taking Fourier and Laplace transforms over E2{l) yields
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Fig. 2 (continued )

Smsa(ZTu+m1T6) (22) k110=42.1 WImK, Kyog=Kzzg=0.466 W/mK,

ps a110=0.025x 1078 m/m-K, appg= a330=32.4<10°% m/m-K,
while the thermal and mechanical boundary conditions of Egs.
(20b)—(20d) in the Fourier and Laplace transform domains are po=1.44x10° kg/m®, co=1.76x10° J/kgK.

still equal to zero. The same thermal and elastic properties assight layered composite slabs with the same layer thickness
given in the literature(8,9]) are adopted for our following nu- 1 25" mm and fiber angles 30 and 90 deg. are considered, respec-
merical calculation in order to make comparison and investigaﬁ@dy, in the article. The parameters of temperature-dependent
the effects of temperature-dependent material properties on timgaterial properties for coefficients of thermal conductivity,,
dependent thermoelastic response. The unidirectional fibgkg thermal expansion coefficients,, are assumed to be iden-
reinforced constituting layer is composed of fiber T300 graphitga| (denoted thereafter byn) and equal to 0.001, 0.005, and
and matrix epoxy. For a specific fiber volume fractin=0.5, the .01, respectively. The dimension of a heated area is taken to be
gross thermal and elastic properties at reference temperature ge- 4 =10 mm, whereH is the overall thickness of the slab.
obtained as Figure 2 shows the distributions of temperature and stress compo-
_ _ _ _ _ nentso,,, oy, andr,,, through the thickness at=0 with fiber
C110=114 Gpa, C220=Ca30=8.7 Gpa, C120=C150=33 Gpa, angle 6=30 ydyeg for different nonlinear parameter at time in-
Cy30=3.4 Gpa, Cyyo=2.7 Gpa, Cg50=Cgs0—8.7 Gpa, stantt=2 min without interlayer thermal contact conductance.

Ui (szp)=
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Fig. 3 Distributions of (a) temperature T, (b) normal stress o, , (¢) normal
stress o, , (d) normal stress o, at time instant ¢=10 sec. with interlayer ther-
mal resistance at interface between fourth and fifth layers (h=100 W/m2K,
6=30 deg)

Figure 3 shows the distributions of temperature and stress complasm as described in the previous section. Since the value of

nentso,y, oyy, ando,,, through the thickness at=0 with fiber thermal conductivity is assumed to increase with increasing tem-

angle #=90 deg for different nonlinear parameterat time in- perature, the distributions of temperature predicted by nonlinear

stant t=10 sec with interlayer thermal contact conductarice theory are, therefore, always higher than by linear theory due to a

=100 Wi/n?- K at the interface between the fourth and fifth layer§aster heat conduction rate. Consequently, the induced thermal
only. It can be seen that the temperature is continuously distrigiresses evaluated by nonlinear theory are also larger than by the
uted through the thickness of the medium if there is no interlaytinear theory. The maximum discrepancy in thermal stresses be-
thermal resistance. However, the temperature distribution d#ween two theories is significant and approximately more than 20

comes discontinuous, as expected, at the interface between ty@scent even whem=0.001.

layers having interlayer thermal resistance. Moreover, the distri-

bution of stress component,,, is continuous through the thick- rﬁs Concluding Remark

ness as expected; while the distributions of stress compone
Oxxs Oyy, and 7y, are not continuous through the thickness, The nonlinear time-dependent thermoelastic response of a mul-

because the latter are not the continuity conditions of layered ntéayered anisotropic slab subjected to thermal loading with
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Fig. 3 (continued )
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